[1]
Y. T. Qu,; Z. J. Li,; W. X. Chen,; Y. Lin,; T. W. Yuan,; Z. K. Yang,; C. M. Zhao,; J. Wang,; C. Zhao,; X. Wang, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781-786.
[2]
J. Q. Zhang,; Y. F. Zhao,; C. Chen,; Y. C. Huang,; C. L. Dong,; C. J. Chen,; R. S. Liu,; C. Y. Wang,; K. Yan,; Y. D. Li, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118-20126.
[3]
C. Tang,; Y. Jiao,; B. Y. Shi,; J. N. Liu,; Z. H. Xie,; X. Chen,; Q. Zhang,; S. Z. Qiao, Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 132, 9256-9261.
[4]
C. Z. Wan,; X. F. Duan,; Y. Huang, Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.
[5]
B. C. Hu,; Z. Y. Wu,; S. Q. Chu,; H. W. Zhu,; H. W. Liang,; J. Zhang,; S. H. Yu, SiO2-protected shell mediated templating synthesis of Fe-N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 2018, 11, 2208-2215.
[6]
Q. H. Li,; W. X. Chen,; H. Xiao,; Y. Gong,; Z. Li,; L. R. Zheng,; X. S. Zheng,; W. S. Yan,; W. C. Cheong,; R. A. Shen, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.
[7]
D. F. Yan,; Y. X. Li,; J. Huo,; R. Chen,; L. M. Dai,; S. Y. Wang, Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.
[8]
D. J. Zhou,; Z. Cai,; X. D. Lei,; W. L. Tian,; Y. M. Bi,; Y. Jia,; N. N. Han,; T. F. Gao,; Q. Zhang,; Y. Kuang, et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 2018, 8, 1701905.
[9]
L. Z. Bu,; N. Zhang,; S. J. Guo,; X. Zhang,; J. Li,; J. L. Yao,; T. Wu,; G. Lu,; J. Y. Ma,; D. Su, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.
[10]
L. Z. Bu,; Q. Shao,; B. E,; J. Guo,; J. L. Yao,; X. Q. Huang, PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2017, 139, 9576-9582.
[11]
W. L. Gu,; L. Y. Hu,; J. Li,; E. K. Wang, Hybrid of g-C3N4 assisted metal-organic frameworks and their derived high-efficiency oxygen reduction electrocatalyst in the whole pH range. ACS Appl. Mater. Interfaces 2016, 8, 35281-35288.
[12]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[13]
S. F. Ji,; Y. J. Chen,; X. L. Wang,; Z. D. Zhang,; D. S. Wang,; Y. D. Li, Chemical synthesis of single atomic site catalysts. Chem. Rev., in press, .
[14]
Y. Xiong,; J. C. Dong,; Z. Q. Huang,; P. Y. Xin,; W. X. Chen,; Y. Wang,; Z. Li,; Z. Jin,; W. Xing,; Z. B. Zhuang, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390-397.
[15]
N. Q. Zhang,; C. L. Ye,; H. Yan,; L. C. Li,; H. He,; D. S. Wang,; Y. D. Li, Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.
[16]
C. H. Zhang,; J. W. Sha,; H. L. Fei,; M. J. Liu,; S. Yazdi,; J. B. Zhang,; Q. F. Zhong,; X. L. Zou,; N. Q. Zhao,; H. S. Yu, et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017, 11, 6930-6941.
[17]
J. L. Xue,; Y. S. Li,; J. Hu, Nanoporous bimetallic Zn/Fe-N-C for efficient oxygen reduction in acidic and alkaline media. J. Mater. Chem. A 2020, 8, 7145-7157.
[18]
J. J. Huo,; L. Lu,; Z. Y. Shen,; Y. Liu,; J. J. Guo,; Q. B. Liu,; Y. Wang,; H. Liu,; M. H. Wu,; G. X. Wang, A rational synthesis of single-atom iron-nitrogen electrocatalysts for highly efficient oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 16271-16282.
[19]
H. Q. Yang,; Z. Y. Li,; S. Q. Kou,; G. L. Lu,; Z. N. Liu, A complex-sequestered strategy to fabricate Fe single-atom catalyst for efficient oxygen reduction in a broad pH-range. Appl. Catal. B Environ. 2020, 278, 119270.
[20]
X. Wang,; Y. Jia,; X. Mao,; D. B. Liu,; W. X. He,; J. Li,; J. G. Liu,; X. C. Yan,; J. Chen,; L. Song, et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, 2000966.
[21]
H. S. Shang,; X. Y. Zhou,; J. C. Dong,; A. Li,; X. Zhao,; Q. H. Liu,; Y. Lin,; J. J. Pei,; Z. Li,; Z. L. Jiang, et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.
[22]
X. L. Wang,; J. Du,; Q. H. Zhang,; L. Gu,; L. J. Cao,; H. P. Liang, In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass. Carbon 2020, 157, 614-621.
[23]
T. T. Sun,; Y. L. Li,; T. T. Cui,; L. B. Xu,; Y G. Wang,; W. X. Chen,; P. P. Zhang,; T. Y. Zheng; X. Z. Fu,; S. L. Zhang, et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206-6214.
[24]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[25]
Y. Chen,; R. J. Guo,; X. Y. Peng,; X. Q. Wang,; X. J. Liu,; J. Q. Ren,; J. He,; L. C. Zhuo,; J. Q. Sun,; Y. F. Liu, et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 2020, 14, 6938-6946.
[26]
X. Y. Peng,; S. Z. Zhao,; Y. Y. Mi,; L. L. Han,; X. J. Liu,; D. F. Qi,; J. Q. Sun,; Y. F. Liu,; H. H. Bao,; L. C. Zhuo, et al. Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Samll 2020, 16, 2002888.
[27]
H. Zhou,; Y. F. Zhao,; J. Xu,; H. R. Sun,; Z. J. Li,; W. Liu,; T. W. Yuan,; W. Liu,; X. Q. Wang,; W. C. Cheong, et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.
[28]
Z. C. Zhuang,; Q. Kang,; D. S. Wang,; Y. D. Li, Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[29]
H. B. Zhang,; P. F. An,; W. Zhou,; B. Y. Guan,; P. Zhang,; J. C. Dong,; X. W. Lou, Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 2018, 4, eaao6657.
[30]
F. Lü,; S. Z. Zhao,; R. J. Guo,; J. He,; X. Y. Peng,; H. H. Bao,; J. T. Fu,; L. L. Han,; G. C. Qi,; J. Luo, et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420-427.
[31]
H. S. Shang,; Z. L. Jiang,; D. N. Zhou,; J. J. Pei,; Y. Wang,; J. C. Dong,; X. S. Zheng,; J. T. Zhang,; W. X. Chen, Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994-5999.
[32]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[33]
L. J. Yu,; C. C. Yang,; W. D. Zhang,; W. Q. Liu,; H. F. Wang,; J. W. Qi,; L. Xu, Solvent-free synthesis of N-doped nanoporous carbon materials as durable high-performance pH-universal ORR catalysts. J. Colloid Interface Sci. 2020, 575, 406-415.
[34]
Z. Y. Lu,; B. Wang,; Y. F. Hu,; W. Liu,; Y. F. Zhao,; R. O. Yang,; Z. P. Li,; J. Luo,; B. Chi,; Z. Jiang, et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622-2626.
[35]
J. Wang,; Z. Q. Huang,; W. Liu,; C. R. Chang,; H. L. Tang,; Z. J. Li,; W. X. Chen,; C. J. Jia,; T. Yao,; S. Q. Wei, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281-17284.
[36]
Y. Y. Wang,; G. X. Zhang,; M. Ma,; Y. Ma,; J. K. Huang,; C. Chen,; Y. Zhang,; X. M. Sun,; Z. F. Yan, Ultrasmall NiFe layered double hydroxide strongly coupled on atomically dispersed FeCo-NC nanoflowers as efficient bifunctional catalyst for rechargeable Zn-air battery. Sci. China Mater. 2020, 63, 1182-1195.
[37]
L. L. Han,; S. J. Song,; M. J. Liu,; S. Y. Yao,; Z. X. Liang,; H. Cheng,; Z. H. Ren,; W. Liu,; R. Q. Lin,; G. C. Qi, et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563-12567.
[38]
H. B. Wang,; T. Maiyalagan,; X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781-794.
[39]
J. Xu,; S. H. Lai,; M. Hu,; S. M. Ge,; R. C. Xie,; F. Li,; D. D. Hua,; H. Xu,; H. Zhou,; R. Wu, et al. Semimetal 1H-SnS2 enables high-efficiency electroreduction of CO2 to CO. Small Methods 2020, 4, 2000567.
[40]
W. Liu,; L. L. Han,; H. T. Wang,; X. R. Zhao,; J. A. Boscoboinik,; X. J. Liu,; C. W. Pao,; J. Q. Sun,; L. C. Zhuo,; J. Luo, et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.
[41]
J. Xu,; J. He,; Y. Ding,; J. Luo, X-ray imaging of atomic nuclei. Sci. China Mater. 2020, 63, 1788-1796.
[42]
A. Gloter,; J. Ingrin,; D. Bouchet,; C. Colliex, Composition and orientation dependence of the O K and Fe L2,3 EELS fine structures in Ca2(AlxFe1-x)2O5. Phys. Rev. B 2000, 61, 2587-2594.
[43]
M. J. F. Guinel,; N. Brodusch,; G. Sha,; M. A. Shandiz,; H. Demers,; M. Trudeau,; S. P. Ringer,; R. Gauvin, Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys. J. Microsc. 2014, 255, 128-137.
[44]
D. Liu,; J. C. Li,; S. C. Ding,; Z. Y. Lyu,; S. Feng,; H. Y. Tian,; C. X. Huyan,; M. J. Xu,; T. Li,; D. Du, et al. 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods 2020, 4, 1900827.
[45]
Z. P. Zhang,; J. T. Sun,; F. Wang,; L. M. Dai, Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038-9043.
[46]
P. Q. Yin,; T. Yao,; Y. E. Wu,; L. R. Zheng,; Y. Lin,; W. Liu,; H. X. Ju,; J. F. Zhu,; X. Hong,; Z. X. Deng, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800-10805.
[47]
F. Yang,; P. Song,; X. Z. Liu,; B. B. Mei,; W. Xing,; Z. Jiang,; L. Gu,; W. L. Xu, Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303-12307.
[48]
G. B. Chen,; P. Liu,; Z. Q. Liao,; F. F. Sun,; Y. H. He,; H. X. Zhong,; T. Zhang,; E. Zschech,; M. W. Chen,; G. Wu, et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.
[49]
J. Q. Sun,; S. E. Lowe,; L. J. Zhang,; Y. Z. Wang,; K. L. Pang,; Y. Wang,; Y. L. Zhong,; P. R. Liu,; K. Zhao,; Z. Y. Tang, et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511-16515.
[50]
G. Wu,; G. F. Cui,; D. Y. Li,; P. K. Shen,; N. Li, Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygenreduction reaction in alkaline electrolyte. J. Mater. Chem. 2009, 19, 6581-6589.
[51]
J. Xu,; C. X. Zhang,; H. X. Liu,; J. Q. Sun,; R. C. Xie,; Y. Qiu,; F. Lü,; Y. F. Liu,; L. C. Zhuo,; X. J. Liu, et al. Amorphous MoOx-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 2020, 70, 104529.
[52]
Y. Wang,; A. R. Chen,; S. H. Lai,; X. Y. Peng,; S. Z. Zhao,; G. Z. Hu,; Y. Qiu,; J. Q. Ren,; X. J. Liu,; J. Luo, Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions. J. Catal. 2020, 381, 78-83.
[53]
S. P. Wang,; M. L. Zhu,; X. B. Bao,; J. Wang,; C. H. Chen,; H. R. Li,; Y. Wang, Synthesis of mesoporous Fe-N/C materials with high catalytic performance in the oxygen reduction reaction. ChemCatChem 2015, 7, 2937-2944.
[54]
J. Liu,; J. Yin,; B. Feng,; F. Li,; F. Wang, One-pot synthesis of unprotected PtPd nanoclusters with enhanced catalytic activity, durability, and methanol-tolerance for oxygen reduction reaction. Appl. Surf. Sci. 2019, 473, 318-325.
[55]
T. Shinagawa,; A. T. Garcia-Esparza,; K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.
[56]
W. J. Wan,; X. J. Liu,; H. Y. Li,; X. Y. Peng,; D. S. Xi,; J. Luo, 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 240, 193-200.
[57]
H. Y. Li,; W. J. Wan,; X. J. Liu,; H. X. Liu,; S. B. Shen,; F. Lv,; J. Luo, Poplar-catkin-derived N, P-Co-doped carbon microtubes as efficient oxygen electrocatalysts for Zn-air batteries. ChemElectroChem 2018, 5, 1113-1119.
[58]
Y. L. Sun,; J. Wang,; Q. Liu,; M. R. Xia,; Y. F. Tang,; F. M. Gao,; Y. L. Hou,; J. Tse,; Y. F. Zhao, Itinerant ferromagnetic half metallic cobalt-iron couples: Promising bifunctional electrocatalysts for ORR and OER. J. Mater. Chem. A 2019, 7, 27175-27185.