Journal Home > Volume 14 , Issue 7

We demonstrate the dipole-assisted carrier transport properties of bis(trifluoromethane)sulfonamide (TFSI)-treated O-ReS2 field-effect transistors. Pristine ReS2 was compared with defect-mediated ReS2 to confirm whether the presence of defects on the interface enhances the interaction between O-ReS2 and TFSI molecules. Prior to the experiment, density functional theory (DFT) calculation was performed, and the result indicated that the charge transfer between TFSI and O-ReS2 is more sensitive to external electric fields than that between TFSI and pristine ReS2. After TFSI treatment, the drain current of O-ReS2 FET was significantly increased up to 1,113.4 times except in the range of -0.32-0.76 V owing to Schottky barrier modulation from dipole polarization of TFSI molecules, contrary to a significant degradation in device performance in pristine ReS2 FET. Moreover, in the treated O-ReS2 device, the dipole direction was highly influenced by the voltage sweep direction, generating a significant area of hysteresis in I-V and transfer characteristics, which was further verified by the surface potential result. Furthermore, the dipole state was enhanced according to the wavelength of the light source and photocurrent. These results indicate that TFSI-treated ReS2 FET has large potential for use as next-generation memristor, memory, and photodetector.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dipole-assisted carrier transport in bis(trifluoromethane) sulfonamide-treated O-ReS2 field-effect transistor

Show Author's information Jae Young Park2,§SangHyuk Yoo1,§Byeongho Park3Taekyeong Kim4Young Tea Chun5Jong Min Kim6Keonwook Kang1( )Soo Hyun Lee2( )Seong Chan Jun1( )
Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
Center for Biomicrosystem, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
Department of Physics, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
Division of Electronics and Electrical Information Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
Electrical Engineering Division Engineering Department, University of Cambridge, Cambridge, CB3 OFA, UK

§ Jae Young Park and SangHyuk Yoo contributed equally to this work.

Abstract

We demonstrate the dipole-assisted carrier transport properties of bis(trifluoromethane)sulfonamide (TFSI)-treated O-ReS2 field-effect transistors. Pristine ReS2 was compared with defect-mediated ReS2 to confirm whether the presence of defects on the interface enhances the interaction between O-ReS2 and TFSI molecules. Prior to the experiment, density functional theory (DFT) calculation was performed, and the result indicated that the charge transfer between TFSI and O-ReS2 is more sensitive to external electric fields than that between TFSI and pristine ReS2. After TFSI treatment, the drain current of O-ReS2 FET was significantly increased up to 1,113.4 times except in the range of -0.32-0.76 V owing to Schottky barrier modulation from dipole polarization of TFSI molecules, contrary to a significant degradation in device performance in pristine ReS2 FET. Moreover, in the treated O-ReS2 device, the dipole direction was highly influenced by the voltage sweep direction, generating a significant area of hysteresis in I-V and transfer characteristics, which was further verified by the surface potential result. Furthermore, the dipole state was enhanced according to the wavelength of the light source and photocurrent. These results indicate that TFSI-treated ReS2 FET has large potential for use as next-generation memristor, memory, and photodetector.

Keywords: field-effect transistor, ReS2, Two-dimensional material, TFSI, superacid, dipole

References(57)

[1]
Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725-728.
[2]
Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826-830.
[3]
Chamlagain, B.; Li, Q.; Ghimire, N. J.; Chuang, H. J.; Perera, M. M.; Tu, H. G.; Xu, Y.; Pan, M. H.; Xaio, D.; Yan, J. Q. et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. ACS Nano 2014, 8, 5079-5088.
[4]
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[5]
Wang, S.; Ang, P. K.; Wang, Z. Q.; Tang, A. L. L.; Thong, J. T. L.; Loh, K. P. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 2010, 10, 92-98.
[6]
Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839-843.
[7]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[8]
Larentis, S.; Fallahazad, B.; Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 2012, 101, 223104.
[9]
Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.
[10]
Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F. Mono-and bilayer WS2 light-emitting transistors. Nano Lett. 2014, 14, 2019-2025.
[11]
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[12]
Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q.Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576-5580.
[13]
Zhao, W. J.; Ribeiro, R. M.; Toh, M.; Carvalho, A.; Kloc, C.; Castro Neto, A. H.; Eda, G. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 2013, 13, 5627-5634.
[14]
Salehzadeh, O.; Tran, N. H.; Liu, X.; Shih, I.; Mi, Z. Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices. Nano Lett. 2014, 14, 4125-4130.
[15]
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.
[16]
Yim, C.; O’Brien, M.; McEvoy, N.; Riazimehr, S.; Schäfer-Eberwein, H.; Bablich, A.; Pawar, R.; Iannaccone, G.; Downing, C.; Fiori, G. et al. Heterojunction hybrid devices from vapor phase grown MoS2. Sci. Rep. 2014, 4, 5458.
[17]
Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.
[18]
Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.
[19]
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[20]
Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.
[21]
Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.
[22]
Komsa, H. P.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 035301.
[23]
Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 2014, 14, 1714-1720.
[24]
Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831-2836.
[25]
Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[26]
Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320-11329.
[27]
Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; Santosh, K. C.; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065-1068.
[28]
Amani, M.; Taheri, P.; Addou, R.; Ahn, G. H.; Kiriya, D.; Lien, D. H.; Ager III, J. W.; Wallace, R. M.; Javey, A. Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides. Nano Lett. 2016, 16, 2786-2791.
[29]
Kim, H.; Lien, D. H.; Amani, M.; Ager, J. W.; Javey, A. Highly stable near-unity photoluminescence yield in monolayer MoS2 by fluoropolymer encapsulation and superacid treatment. ACS Nano 2017, 11, 5179-5185.
[30]
Hofmann, A. I.; Kroon, R.; Yu, L. Y.; Müller, C. Highly stable doping of a polar polythiophene through co-processing with sulfonic acids and bistriflimide. J. Mater. Chem. C 2018, 6, 6905-6910.
[31]
Çakır, D.; Sahin, H.; Peeters, F. M. Doping of rhenium disulfide monolayers: A systematic first principles study. Phys. Chem. Chem. Phys. 2014, 16, 16771-16779.
[32]
Mun, J.; Yim, T.; Park, J. H.; Ryu, J. H.; Lee, S. Y.; Kim, Y. G.; Oh, S. M. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries. Sci. Rep. 2014, 4, 5802.
[33]
Steiner, T. The hydrogen bond in the solid state. Angew. Chem., Int. Ed. 2002, 41, 48-76.
[34]
Liang, S. Z.; Chen, G. G.; Harutyunyan, A. R.; Sofo, J. O. Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing. Phys. Rev. B 2014, 90, 115410.
[35]
Park, J. Y.; Joe, H. E.; Yoon, H. S.; Yoo, S.; Kim, T.; Kang, K.; Min, B. K.; Jun, S. C. Contact effect of ReS2/metal interface. ACS Appl. Mater. Interfaces 2017, 9, 26325-26332.
[36]
Mastomäki, J.; Roddaro, S.; Rocci, M.; Zannier, V.; Ercolani, D.; Sorba, L.; Maasilta, I. J.; Ligato, N.; Fornieri, A.; Strambini, E. et al. InAs nanowire superconducting tunnel junctions: Quasiparticle spectroscopy, thermometry, and nanorefrigeration. Nano Res. 2017, 10, 3468-3475.
[37]
Tian, B. B.; Wang, J. L.; Fusil, S.; Liu, Y.; Zhao, X. L.; Sun, S.; Shen, H.; Lin, T.; Sun, J. L.; Duan, C. G. et al. Tunnel electroresistance through organic ferroelectrics. Nat. Commun. 2016, 7, 11502.
[38]
Si, M. W.; Su, C. J.; Jiang, C. S.; Conrad, N. J.; Zhou, H.; Maize, K. D.; Qiu, G.; Wu, C. T.; Shakouri, A.; Alam, M. A. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 2018, 13, 24-28.
[39]
Suda, Y.; Koyama, H. Electron resonant tunneling with a high peak-to-valley ratio at room temperature in Si1-x Gex/Si triple barrier diodes. Appl. Phys. Lett. 2001, 79, 2273-2275.
[40]
Zhou, J. T.; Kim, K. H.; Lu, W. Crossbar RRAM arrays: Selector device requirements during read operation. IEEE Trans. Electron Dev. 2014, 61, 1369-1376.
[41]
Zhang, F.; Zhu, Y. Q.; Appenzeller, J. Novel two-terminal vertical transition metal dichalcogenide based memory selectors. In Proceedings of the 75th Annual Device Research Conference (DRC), South Bend, IN, USA, 2017, pp 1-2.
[42]
Wang, H. M.; Wu, Y. H.; Cong, C. X.; Shang, J. Z.; Yu, T. Hysteresis of electronic transport in graphene transistors. ACS Nano 2010, 4, 7221-7228.
[43]
Wang, M.; Zhou, J. T.; Yang, Y. C.; Gaba, S.; Liu, M.; Lu, W. D. Conduction mechanism of a TaOx-based selector and its application in crossbar memory arrays. Nanoscale 2015, 7, 4964-4970.
[44]
Horiuchi, S.; Yamaguchi, J.; Naito, K. Electric conduction through thin insulating Langmuir film. J. Electrochem. Soc. 1968, 115, 634-637.
[45]
Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 2007, 107, 1296-1323.
[46]
Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575-6581.
[47]
Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067-8077.
[48]
Strelcov, E.; Ievlev, A. V.; Jesse, S.; Kravchenko, I. I.; Shur, V. Y.; Kalinin, S. V. Direct probing of charge injection and polarization- controlled ionic mobility on ferroelectric LiNbO3 surfaces. Adv. Mater. 2014, 26, 958-963.
[49]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[50]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[51]
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.
[52]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
[53]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[54]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[55]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[56]
Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272-1276.
[57]
Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354-360.
File
12274_2020_3185_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 July 2020
Revised: 10 October 2020
Accepted: 15 October 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the national research foundation of Korea (NRF) grant funded by the Korea government (MIST) (Nos. NRF-2019R1A2C2090443, NRF-2017M3A7B4041987, NRF-2020M3F6A1081009, and NRF-2017M1A3A3A02015033) and Korea Electric Power Corporation. (Grant No. R19XO01-23).

Return