AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An optical slot-antenna-coupled cavity (SAC) framework towards tunable free-space graphene photonic surfaces

Sidan Fu1Xiaoxin Wang1Haozhe Wang2Xiaoxue Gao1Kurt Broderick2Jing Kong2( )Jifeng Liu1( )
Thayer school of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
Show Author Information

Graphical Abstract

Abstract

The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applied to free-space two-dimensional (2D) photonic devices because the surface-incident absolute absorption of SLG is limited to 1%-2%. No significant change in either reflectance or transmittance would be observed even if SLG is made transparent upon gating. To achieve significantly enhanced surface-incident optical absorption in SLG in a device structure that also allows gating, here we embed SLG in an optical slot-antenna-coupled cavity (SAC) framework, simultaneously enhancing SLG absorption by up to 20 times and potentially enabling electrical gating of SLG as a step towards tunable 2D photonic surfaces. This framework synergistically integrates near-field enhancement induced by ultrahigh refractive index semimetal slot-antenna with broadband resonances in visible and infrared regimes, ~ 3 times more effective than a vertical cavity structure alone. An example of this framework consists of self-assembled, close-packed Sn nanodots separated by ~ 10 nm nanogaps on a SLG/SiO2/Al stack, which dramatically increases SLG optical absorption to 10%-25% at λ = 600-1,900 nm. The enhanced SLG absorption spectrum can also be controlled by the insulator thickness. For example, SLG embedded in this framework with a 150 nm-thick SiO2 insulating layer displays a distinctive red color in contrast to its surrounding regions without SLG on the same sample under white light illumination. This opens a potential path towards gate-tunable spectral reflectors. Overall, this work initiates a new approach towards tunable 2D photonic surfaces.

Electronic Supplementary Material

Download File(s)
12274_2020_3184_MOESM1_ESM.pdf (1.8 MB)

References

[1]
T. Mueller,; F. N. Xia,; P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
[2]
S. Goossens,; G. Navickaite,; C. Monasterio,; S. Gupta,; J. J. Piqueras,; R. Pérez,; G. Burwell,; I. Nikitskiy,; T. Lasanta,; T. Galán, et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366-371.
[3]
Y. Song,; X. M. Li,; C. Mackin,; X. Zhang,; W. J. Fang,; T. Palacios,; H. W. Zhu,; J. Kong, Role of interfacial oxide in high-efficiency graphene-silicon schottky barrier solar cells. Nano Lett. 2015, 15, 2104-2110.
[4]
A. K. Geim,; K. S. Novoselov, The rise of graphene. Nat. Mater. 2007, 6, 183-191.
[5]
K. F. Mak,; L. Ju,; F. Wang,; T. F. Heinz, Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 2012, 152, 1341-1349.
[6]
F. Wang,; Y. B. Zhang,; C. S. Tian,; C. Girit,; A. Zettl,; M. Crommie,; Y. R. Shen, Gate-variable optical transitions in graphene. Science 2008, 320, 206-209.
[7]
M. Liu,; X. B. Yin,; E. Ulin-Avila,; B. S. Geng,; T. Zentgraf,; L. Ju,; F. Wang,; X. Zhang, A graphene-based broadband optical modulator. Nature 2011, 474, 64-67.
[8]
C. T. Phare,; Y. H. D. Lee,; J. Cardenas,; M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511-514.
[9]
V. Sorianello,; M. Midrio,; G. Contestabile,; I. Asselberghs,; J. Van Campenhout,; C. Huyghebaert,; I. Goykhman,; A. K. Ott,; A. C. Ferrari,; M. Romagnoli, Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photonics 2018, 12, 40-44.
[10]
S. D Fu,; H. Z. Wang,; X. X. Wang,; Y. Song,; J. Kong,; J. F. Liu, Self-assembled, ultrahigh refractive index pseudo-periodic Sn nanostructures for broad-band infrared photon management in single layer graphene. ACS Photonics 2019, 6, 50-58.
[11]
R. R. Nair,; P. Blake,; A. N. Grigorenko,; K. S. Novoselov,; T. J. Booth,; T. Stauber,; N. M. R. Peres,; A. K. Geim, Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.
[12]
B. C. Deng,; Q. S. Guo,; C. Li,; H. Z. Wang,; X. Ling,; D. B. Farmer,; S. J. Han,; J. Kong,; F. N. Xia, Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures. ACS Nano 2016, 10, 11172-11178.
[13]
Y. Liu,; R. Cheng,; L. Liao,; H. L. Zhou,; J. W. Bai,; G. Liu,; L. X. Liu,; Y. Huang,; X. F. Duan, Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.
[14]
J. T. Liu,; N. H. Liu,; J. Li,; X. J. Li,; J. H. Huang, Enhanced absorption of graphene with one-dimensional photonic crystal. Appl. Phys. Lett. 2012, 101, 052104.
[15]
A. Khaleque,; H. T. Hattori, Absorption enhancement in graphene photonic crystal structures. Appl. Opt. 2016, 55, 2936-2942.
[16]
F. Ding,; Y. Q. Yang,; R. A. Deshpande,; S. I. Bozhevolnyi, A review of gap-surface plasmon metasurfaces: Fundamentals and applications. Nanophotonics 2018, 7, 1129-1156.
[17]
J. Lermé, Size evolution of the surface plasmon resonance damping in silver nanoparticles: Confinement and dielectric effects. J. Phys. Chem. C 2011, 115, 14098-14110.
[18]
V. Juvé,; M. F. Cardinal,; A. Lombardi,; A. Crut,; P. Maioli,; J. Pérez-Juste,; L. M. Liz-Marzán,; N. Del Fatti,; F. Vallée, Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: Single gold nanorods. Nano Lett. 2013, 13, 2234-2240.
[19]
M. S. Eggleston,; K. Messer,, L. M. Zhang,, E. Yablonovitch,; M. C. Wu, Optical antenna enhanced spontaneous emission. Proc. Natl. Acad. Sci. USA 2015, 112, 1704-1709.
[20]
P Bharadwaj,; B. Deutsch,; L. Novotny, Optical antennas. Adv. Opt. Photonics 2009, 1, 438-483.
[21]
P. A. Anderson,; B. S. Schmidt,; M. Lipson, High confinement in silicon slot waveguides with sharp bends. Opt. Express 2006, 14, 9197-9202.
[22]
C. A. Barrios,; B. Sánchez,; K. B. Gylfason,; A. Griol,; H. Sohlström,; M. Holgado,; R. Casquel, Demonstration of slot-waveguide structures on silicon nitride/silicon oxide platform. Opt. Express 2007, 15, 6846-6856.
[23]
G. Q. Luo,; Z. F. Hu,; W. J. Li,; X. H. Zhang,; L. L Sun,; J. F. Zheng, Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes. IEEE Trans. Antenn. Propag. 2012, 60, 1698-1704.
[24]
K. G. Cognée,; H. M. Doeleman,; P. Lalanne,; A. F. Koenderink, Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources. Light Sci. Appl. 2019, 8, 115.
[25]
I. M. Palstra,; H. M. Doeleman,; A. F. Koenderink, Hybrid cavity-antenna systems for quantum optics outside the cryostat? Nanophotonics 2019, 8, 1513-1531.
[26]
G. Burns, Solid State Physics; Academic Press: New York, 1985.
[27]
K. Takeuchi,; S. Adachi, Optical properties of β-Sn films. J. Appl. Phys. 2009, 105, 073520.
[28]
D. G. Baranov,; D. A. Zuev,; S. I. Lepeshov,; O. V. Kotov,; A. E. Krasnok,; A. B. Evlyukhin,; B. N. Chichkov, All-dielectric nanophotonics: The quest for better materials and fabrication techniques. Optica 2017, 4, 814-825.
[29]
S. M. Young,; C. L. Kane, Dirac semimetals in two dimensions. Phys. Rev. Lett. 2015, 115, 126803.
[30]
A. Kozbial,; Z. T. Li,; C. Conaway,; R. McGinley,; S. Dhingra,; V. Vahdat,; F. Zhou,; B. D’Urso,; H. T. Liu,; L. Li, Study on the surface energy of graphene by contact angle measurements. Langmuir 2014, 30, 8598-8606.
[31]
W. H. Hayt, Jr.; J. A. Buck, Engineering Electromagnetics; 6th ed. McGraw-Hill: New York, 2000.
[32]
Z. Y. Wang,; X. X. Wang,; J. F. Liu, An efficient nanophotonic hot electron solar-blind UV detector. ACS Photonics 2018, 5, 3989-3995.
[33]
X. Sheng,; J. F. Liu,; I. Kozinsky,; A. M. Agarwal,; J. Michel,; L. C. Kimerling, Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells. Adv. Mater. 2011, 23, 843-847.
[34]
A. Campion.; P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241-250.
[35]
D. Wang,; A. E. L. Allcca,; T. F. Chung,; A. V. Kildishev,; Y. P. Chen,; A. Boltasseva,; V. M. Shalaev, Enhancing the graphene photocurrent using surface plasmons and a p-n junction. Light Sci. Appl. 2020, 9, 126.
[36]
M. Freitag,; T. Low,; F. N. Xia,; P. Avouris, Photoconductivity of biased graphene. Nat. Photonics 2013, 7, 53-59.
[37]
A. Singh,; S. Ghosh,; A. Agarwal, Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene. Phys. Rev. B 2018, 97, 045402.
[38]
J. R. Webera,; A. Janotti,; P. Rinke,; C. G. Van de Walle, Dangling-bond defects and hydrogen passivation in germanium. Appl. Phys. Lett. 2007, 91, 142101.
[39]
C. Eisenmenger-Sittner,; H. Bangert,; H. Störi,; J. Brenner,; P. B. Barna, Stranski-Krastanov growth of Sn on a polycrystalline Al film surface initiated by the wetting of Al by Sn. Surf. Sci. 2001, 489, 161-168.
[40]
A. Reina,; X. T. Jia,; J. Ho,; D. Nezich,; H. Son,; V. Bulovic,; M. S. Dresselhaus,; J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.
[41]
H. Z. Wang,; W. S. Leong,; F. T. Hu,; L. L. Ju,; C. Su,; Y. K. Guo,; J. Li,; M. Li,; A. M. Hu,; J. Kong, Low-temperature copper bonding strategy with graphene interlayer. ACS Nano 2018, 12, 2395-2402.
[42]
W. S. Leong,; H. Z. Wang,; J. Yeo,; F. J. Martin-Martinez,; A. Zubair,; P. C. Shen,; Y. M. Mao,; T. Palacios,; M. J. Buehler,; J. Y. Hong, et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867.
Nano Research
Pages 1364-1373
Cite this article:
Fu S, Wang X, Wang H, et al. An optical slot-antenna-coupled cavity (SAC) framework towards tunable free-space graphene photonic surfaces. Nano Research, 2021, 14(5): 1364-1373. https://doi.org/10.1007/s12274-020-3184-z
Topics:

810

Views

2

Crossref

N/A

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 07 July 2020
Revised: 09 October 2020
Accepted: 16 October 2020
Published: 07 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return