Journal Home > Volume 14 , Issue 7

Dielectrophoresis (DEP) describes the motion of suspended objects when exposed to an inhomogeneous electric field. It has been successful as a method for parallel and site-selective assembling of nanotubes from a dispersion into a sophisticated device architecture. Researchers have conducted extensive works to understand the DEP of nanotubes in aqueous ionic surfactant solutions. However, only recently, DEP was applied to polymer-wrapped single-walled carbon nanotubes (SWCNTs) in organic solvents due to the availability of ultra-pure SWCNT content. In this paper, the focus is on the difference between the DEP in aqueous and organic solutions. It starts with an introduction into the DEP of carbon nanotubes (CNT-DEP) to provide a comprehensive, in-depth theoretical background before discussing in detail the experimental procedures and conditions. For academic interests, this work focuses on the CNT-DEP deposition scheme, discusses the importance of the electrical double layer, and employs finite element simulations to optimize CNT-DEP deposition condition with respect to the experimental observation. An important outcome is an understanding of why DEP in organic solvents allows for the deposition and alignment of SWCNTs in low-frequency and even static electric fields, and why the response of semiconducting SWCNTs (s-SWCNTs) is strongly enhanced in non-conducting, weakly polarizable media. Strategies to further improve CNT-DEP for s-SWCNT-relevant applications are given as well. Overall, this work should serve as a practical guideline to select the appropriate setting for effective CNT DEPs.


menu
Abstract
Full text
Outline
About this article

Principles of carbon nanotube dielectrophoresis

Show Author's information Wenshan Li1,3,Frank Hennrich1,2,4Benjamin S. Flavel1Simone Dehm1Manfred Kappes1,2Ralph Krupke1,3,4( )
Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt 64287, Germany
Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany

Present address: School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China

Abstract

Dielectrophoresis (DEP) describes the motion of suspended objects when exposed to an inhomogeneous electric field. It has been successful as a method for parallel and site-selective assembling of nanotubes from a dispersion into a sophisticated device architecture. Researchers have conducted extensive works to understand the DEP of nanotubes in aqueous ionic surfactant solutions. However, only recently, DEP was applied to polymer-wrapped single-walled carbon nanotubes (SWCNTs) in organic solvents due to the availability of ultra-pure SWCNT content. In this paper, the focus is on the difference between the DEP in aqueous and organic solutions. It starts with an introduction into the DEP of carbon nanotubes (CNT-DEP) to provide a comprehensive, in-depth theoretical background before discussing in detail the experimental procedures and conditions. For academic interests, this work focuses on the CNT-DEP deposition scheme, discusses the importance of the electrical double layer, and employs finite element simulations to optimize CNT-DEP deposition condition with respect to the experimental observation. An important outcome is an understanding of why DEP in organic solvents allows for the deposition and alignment of SWCNTs in low-frequency and even static electric fields, and why the response of semiconducting SWCNTs (s-SWCNTs) is strongly enhanced in non-conducting, weakly polarizable media. Strategies to further improve CNT-DEP for s-SWCNT-relevant applications are given as well. Overall, this work should serve as a practical guideline to select the appropriate setting for effective CNT DEPs.

Keywords: assembly, deposition, alignment, single-walled carbon nanotubes, dielectrophoresis, hydrodynamics, polarizability

References(99)

[1]
Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35-39.
[2]
Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68-72.
[3]
Kocabas, C.; Kim, H. S.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. 2008, 105, 1405-1409.
[4]
Steiner, M.; Engel, M.; Lin, Y. M.; Wu, Y. Q.; Jenkins, K.; Farmer, D. B.; Humes, J. J.; Yoder, N. L.; Seo, J. W. T.; Green, A. A. et al. High- frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 2012, 101, 053123.
[5]
Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317-1320.
[6]
Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526-530.
[7]
Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341-350.
[8]
Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824-2860.
[9]
Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369-1372.
[10]
Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271-276.
[11]
Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74-78.
[12]
Cao, Y.; Brady, G. J.; Gui, H.; Rutherglen, C.; Arnold, M. S.; Zhou, C. W. Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano 2016, 10, 6782-6790.
[13]
Rutherglen, C.; Kane, A. A.; Marsh, P. F.; Cain, T. A.; Hassan, B. I.; AlShareef, M. R.; Zhou, C. W.; Galatsis, K. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nat. Electron. 2019, 2, 530-539.
[14]
Kshirsagar, C.; Li, H.; Kopley, T. E.; Banerjee, K. Accurate intrinsic gate capacitance model for carbon nanotube-array based FETs considering screening effect. IEEE Electron Device Lett. 2008, 29, 1408-1411.
[15]
Cao, Q.; Han, S. J.; Tulevski, G. S. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch. Nat. Commun. 2014, 5, 5071.
[16]
Sun, Y. N.; Kursun, V. N-Type carbon-nanotube MOSFET device profile optimization for very large scale integration. Trans. Electr. Electron. Mater. 2011, 12, 43-50.
[17]
Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800-805.
[18]
Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S. P.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454-7462.
[19]
Hong, S. W.; Banks, T.; Rogers, J. A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 2010, 22, 1826-1830.
[20]
Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428-5429.
[21]
Chen, Y. B.; Zhang, Y. Y.; Hu, Y.; Kang, L. X.; Zhang, S. C.; Xie, H. H.; Liu, D.; Zhao, Q. C.; Li, Q. W.; Zhang, J. State of the art of single-walled carbon nanotube synthesis on surfaces. Adv. Mater. 2014, 26, 5898-5922.
[22]
Liu, W. M.; Zhang, S. C.; Qian, L.; Lin, D. W.; Zhang, J. Growth of high-density horizontal SWNT arrays using multi-cycle in-situ loading catalysts. Carbon 2020, 157, 164-168.
[23]
LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. N. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101-104.
[24]
Wang, Y. L.; Pillai, S. K. R.; Chan-Park, M. B. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique. Small 2013, 9, 2960-2969.
[25]
Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180-186.
[26]
Li, X. L.; Zhang, L.; Wang, X. R.; Shimoyama, I.; Sun, X. M.; Seo, W. K.; Dai, H. J. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 2007, 129, 4890-4891.
[27]
Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460-3466.
[28]
Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850-856.
[29]
Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.
[30]
Maune, H. T.; Han, S. P.; Barish, R. D.; Bockrath, M.; Goddard III, M. B. W. A.; Rothemund, P. W. K.; Winfree, E. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 2010, 5, 61-66.
[31]
Zhao, M. Y.; Chen, Y. H.; Wang, K. X.; Zhang, Z. X.; Streit, J. K.; Fagan, J. A.; Tang, J. S.; Zheng, M.; Yang, C. Y.; Zhu, Z. et al. DNA- directed nanofabrication of high-performance carbon nanotube field- effect transistors. Science 2020, 368, 878-881.
[32]
Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J. S.; Cao, T. Y.; Zhou, Z. Y.; Ta, T. A.; Streit, J. K. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874-877.
[33]
Keren, K.; Berman, R. S.; Buchstab, E.; Sivan, U.; Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 2003, 302, 1380-1382.
[34]
Hennrich, F.; Li, W. S.; Fischer, R.; Lebedkin, S.; Krupke, R.; Kappes, M. M. Length-sorted, large-diameter, polyfluorene-wrapped semiconducting single-walled carbon nanotubes for high-density, short-channel transistors. ACS Nano 2016, 10, 1888-1895.
[35]
Castellanos, A.; Ramos, A.; González, A.; Green, N. G.; Morgan, H. Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws. J. Phys. D: Appl. Phys. 2003, 36, 2584-2597.
[36]
Lin, Y. Modeling of dielectrophoresis in micro and nano systems. Doctoral thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2008.
[37]
Pohl, H. A. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields; Cambridge University Press: Cambridge, 1978.
[38]
Krupke, R.; Hennrich, F.; Löhneysen, H. V.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344-347.
[39]
Krupke, R.; Hennrich, F.; Weber, H. B.; Kappes, M. M.; Löhneysen, H. V. Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using Ac-dielectrophoresis. Nano Lett. 2003, 3, 1019-1023.
[40]
Pohl, H. A. The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 1951, 22, 869-871.
[41]
Pethig, R. Dielectric and Electronic Properties of Biological Materials; John Willey & Sons: New York, 1979.
[42]
Green, N. G.; Ramos, A.; González, A.; Castellanos, A.; Morgan, H. Electrothermally induced fluid flow on microelectrodes. J. Electrostat. 2001, 53, 71-87.
[43]
Green, N. G.; Morgan, H. Dielectrophoretic separation of nano-particles. J. Phys. D: Appl. Phys. 1997, 30, L41.
[44]
Hughes, M. P. Dielectrophoretic behavior of latex nanospheres: Low-frequency dispersion. J. Colloid Interface Sci. 2002, 250, 291-294.
[45]
Krupke, R.; Hennrich, F.; Weber, H. B.; Beckmann, D.; Hampe, O.; Malik, S.; Kappes, M. M.; Löhneysen, H. V. Contacting single bundles of carbon nanotubes with alternating electric fields. Appl. Phys. A 2003, 76, 397-400.
[46]
Krupke, R.; Hennrich, F.; Kappes, M. M.; Löhneysen, H. V. Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 2004, 4, 1395-1399.
[47]
Li, W. S.; Pyatkov, F.; Dehm, S.; Flavel, B. S.; Krupke, R. Deposition of semiconducting single-walled carbon nanotubes using light-assisted dielectrophoresis. Phys. Status Solidi B 2014, 251, 2475-2479.
[48]
Gomulya, W.; Gao, J.; Loi, M. A. Conjugated polymer-wrapped carbon nanotubes: Physical properties and device applications. Eur. Phys. J. B 2013, 86, 404.
[49]
Lemasson, F.; Berton, N.; Tittmann, J.; Hennrich, F.; Kappes, M. M.; Mayor, M. Polymer library comprising fluorene and carbazole homo- and copolymers for selective single-walled carbon nanotubes extraction. Macromolecules 2012, 45, 713-722.
[50]
Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 2013, 7, 2231-2239.
[51]
Falkovich, G. Fluid Mechanics: A Short Course for Physicists; Cambridge University Press: Cambridge, 2011.
[52]
Morgan, H.; Green, N. G. AC Electrokinetics: Colloids and Nanoparticles; Research Studies Press: Baldock, UK, 2003.
[53]
Saito, R.; Dresselhaus, G.; Dresselhaus, M. S.; Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.
DOI
[54]
Rao, R.; Liptak, D.; Cherukuri, T.; Yakobson, B. I.; Maruyama, B. In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat. Mater. 2012, 11, 213-216.
[55]
Hida, T. Brownian Motion; Springer: New York, 1980; pp 44-113.
DOI
[56]
Tsyboulski, D. A.; Bachilo, S. M.; Kolomeisky, A. B.; Weisman, R. B. Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension. ACS Nano 2008, 2, 1770-1776.
[57]
Broersma, S. Viscous force and torque constants for a cylinder. J. Chem. Phys. 1981, 74, 6989-6990.
[58]
Han, Y.; Alsayed, A. M.; Nobili, M.; Zhang, J.; Lubensky, T. C.; Yodh, A. G. Brownian motion of an ellipsoid. Science 2006, 314, 626-630.
[59]
Kim, Y.; Hong, S.; Jung, S.; Strano, M. S.; Choi, J.; Baik, S. Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants. J. Phys. Chem. B 2006, 110, 1541-1545.
[60]
Li, W. S.; Hennrich, F.; Flavel, B. S.; Kappes, M. M.; Krupke, R. Chiral-Index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy. Nanotechnology 2016, 27, 375706.
[61]
Jones, T. B. Electromechanics of Particles; Cambridge University Press: Cambridge, 1995.
DOI
[62]
Blatt, S.; Hennrich, F.; Löhneysen, H. V.; Kappes, M. M.; Vijayaraghavan, A.; Krupke, R. Influence of structural and dielectric anisotropy on the dielectrophoresis of single-walled carbon nanotubes. Nano Lett. 2007, 7, 1960-1966.
[63]
Thomsen, C.; Reich, S.; Maultzsch, J. Carbon Nanotubes: Basic concepts and Physical Properties; Wiley-VCH Verlag GmbH, Weinheim, 2004.
DOI
[64]
Xu, D. D.; Subramanian, A.; Dong, L. X.; Nelson, B. J. Shaping nanoelectrodes for high-precision dielectrophoretic assembly of carbon nanotubes. IEEE Trans. Nanotechnol. 2009, 8, 449-456.
[65]
Small, E. W.; Isenberg, I. Hydrodynamic properties of a rigid molecule: Rotational and linear diffusion and fluorescence anisotropy. Biopolymers 1977, 16, 1907-1928.
[66]
Ramos, A.; Morgan, H.; Green, N. G.; Castellanos, A. AC electrokinetics: A review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 1998, 31, 2338-2353.
[67]
Castellanos, A. Electrohydrodynamics; Springer: New York, 1998.
DOI
[68]
Saville, D. A. Electrohydrodynamics: The taylor-melcher leaky dielectric model. Annu. Rev. Fluid Mech. 1997, 29, 27-64.
[69]
Melcher, J. R.; Taylor, G. I. Electrohydrodynamics: A review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1969, 1, 111-146.
[70]
Fetter, C. W. Contaminant Hydrogeology; Prentice Hall, New Jersey, 1999.
[71]
Lide, D. R. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; 90th ed. CRC: London, 2009.
[72]
Baszkin, A.; Norde, W. Physical Chemistry of Biological Interfaces; CRC Press: Boca Raton, 1999.
DOI
[73]
Burg, B. R.; Bianco, V.; Schneider, J.; Poulikakos, D. Electrokinetic framework of dielectrophoretic deposition devices. J. Appl. Phys. 2010, 107, 124308.
[74]
Probstein, R. F. Physicochemical Hydrodynamics: An Introduction; 2nd ed. John Wiley & Sons: New York, 1994.
DOI
[75]
Kirby, B. J. Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices; Cambridge University Press: Cambridge, 2010.
DOI
[76]
Blatt, S. Dielectrophoresis of Single-Walled Carbon Nanotubes. Wissenschaftliche Berichte, FZKA-7431, Dissertation, Universität Karlsruhe, 2008.
DOI
[77]
Kilic, M. S.; Bazant, M. Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 2007, 75, 021502.
[78]
Israelachvili, J. N. Intermolecular and Surface Forces; 3rd ed. Academic Press: Amsterdam, 2011.
[79]
Booth, F. Dielectric constant of polar liquids at high field strengths. J. Chem. Phys. 1955, 23, 453-457.
[80]
Novikov, G. F.; Gapanovich, M. V.; Rabenok, E. V.; Bogdanova, L. M.; Kuzub, L. I. Dielectric properties of sols of silver nanoparticles capped by alkyl carboxylate ligands. Russ. Chem. Bull. 2011, 60, 419-425.
[81]
Liu, H.; Qian, S. Z.; Bau, H. H. The effect of translocating cylindrical particles on the ionic current through a nanopore. Biophys. J. 2007, 92, 1164-1177.
[82]
Kilic, M. S.; Bazant, M. Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 2007, 75, 021503.
[83]
Paunov, V. N.; Dimova, R. I.; Kralchevsky, P. A.; Broze, G.; Mehreteab, A. The hydration repulsion between charged surfaces as an interplay of volume exclusion and dielectric saturation effects. J. Colloid Interface Sci. 1996, 182, 239-248.
[84]
McClellan, A. L. Tables of Experimental Dipole Moments; Rahara Enterprises: El Cerrito, CA, 1974.
[85]
Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Oron-Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 2007, 7, 1556-1560.
[86]
Ritzoulis, G.; Papadopoulos, N.; Jannakoudakis, D. Densities, viscosities, and dielectric constants of acetonitrile+ toluene at 15, 25, and 35.degree.C. J. Chem. Eng. Data 1986, 31, 146-148.
[87]
Dunlap, W. C. Jr.; Watters, R. L. Direct measurement of the dielectric constants of silicon and germanium. Phys. Rev. 1953, 92, 1396-1397.
[88]
Gray, P. R.; Hurst, P. J.; Lewis, S. H.; Meyer, R. G. Analysis and Design of Analog Integrated Circuits; 4th ed. Wiley: New York, 2001.
[89]
Eranna, G. Crystal Growth and Evaluation of Silicon for VLSI and ULSI; CRC Press: Boca Raton, 2014.
DOI
[90]
Srivastava, J. K.; Prasad, M.; Wagner, J. B. Jr. Electrical conductivity of silicon dioxide thermally grown on silicon. J. Electrochem. Soc. 1985, 132, 955-963.
[91]
Burg, B. R.; Schneider, J.; Bianco, V.; Schirmer, N. C.; Poulikakos, D. Selective parallel integration of individual metallic single-walled carbon nanotubes from heterogeneous solutions. Langmuir 2010, 26, 10419-10424.
[92]
Somasundaran, P.; Healy, T. W.; Fuerstenau, D. W. Surfactant adsorption at the solid-liquid interface-dependence of mechanism on chain length. J. Phys. Chem. 1964, 68, 3562-3566.
[93]
Santos, F. J. V; De Castro, C. A. N.; Dymond, J. H.; Dalaouti, N. K.; Assael, M. J.; Nagashima, A. Standard reference data for the viscosity of toluene. J. Phys. Chem. Ref. Data 2006, 35, 1-8.
[94]
de Castro, C. A. N.; Li, S. F. Y.; Nagashima, A.; Trengove, R. D.; Wakeham, W. A. Standard reference data for the thermal conductivity of liquids. J. Phys. Chem. Ref. Data 1986, 15, 1073-1086.
[95]
Glen, N. F.; Johns, A. I. Determination of the density of toluene in the range from (293 to 373) K and from (0.1 to 30) MPa. J. Chem. Eng. Data 2009, 54, 2538-2545.
[96]
Lide, D. R. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; 85th ed. CRC Press: Boca Raton, 2004.
[97]
O’Reilly, D. E.; Peterson, E. M. Self-diffusion coefficients and rotational correlation times in polar liquids. II. J. Chem. Phys. 1971, 55, 2155-2163.
[98]
O’Reilly, D. E.; Peterson, E. M. Self-diffusion coefficients and rotational correlation times in polar liquids. III. Toluene. J. Chem. Phys. 1972, 56, 2262-2266.
[99]
Atkins, P. W.; De Paula. J. Atkins’ Physical Chemistry; 9th ed. Oxford University Press: Oxford, 2010.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 July 2020
Revised: 12 October 2020
Accepted: 15 October 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© The Author(s) 2021

Acknowledgements

The authors acknowledge support from the Helmholtz Research Program Science and Technology of Nanosystems (STN). B. S. Flavel acknowledges support from the Deutsche Forschungsgemeinschafts Emmy Noether Program under grant number FL 834/1-1. The COMSOL simulation code files are available online at https://tuprints.ulb.tu-darmstadt.de/id/eprint/5984.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return