AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Bioengineering of nano metal-organic frameworks for cancer immunotherapy

Gaowei Chong1,2Jie Zang1Yi Han1Runping Su1Nopphon Weeranoppanant3,4( )Haiqing Dong1,2( )Yongyong Li1( )
Shanghai Tenth People’s Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
Department of Chemical Engineering, Burapha University, 169 Longhard Bangsaen, Saensook, Chonburi 20131, Thailand
School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
Show Author Information

Graphical Abstract

Abstract

Immunotherapy techniques, such as immune checkpoint inhibitors, chimeric antigen receptor (CAR) T cell therapies and cancer vaccines, have been burgeoning with great success, particularly for specific cancer types. However, side effects with fatal risks, dysfunction in tumor microenvironment and low immune response rates remain the bottlenecks in immunotherapy. Nano metal-organic frameworks (nMOFs), with an accurate structure and a narrow size distribution, are emerging as a solution to these problems. In addition to their function of temporospatial delivery, a large library of their compositions, together with flexibility in chemical interaction and inherent immune efficacy, offers opportunities for various designs of nMOFs for immunotherapy. In this review, we overview state-of-the-art research on nMOFs-based immunotherapies as well as their combination with other therapies. We demonstrate that nMOFs are predominantly customized for vaccine delivery or tumor-microenvironment modulation. Finally, a prospect of nMOFs in cancer immunotherapy will be discussed.

References

[1]
C. W. Shields IV,; L. L. W. Wang,; M. A. Evans,; S. Mitragotri, Materials for immunotherapy. Adv. Mater. 2020, 32, 1901633.
[2]
P. Sharma,; S. Hu-Lieskovan,; J. A. Wargo,; A. Ribas, Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017, 168, 707-723.
[3]
P. Sharma,; J. P. Allison, The future of immune checkpoint therapy. Science 2015, 348, 56-61.
[4]
R. S. Riley,; C. H. June,; R. Langer,; M. J. Mitchell, Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175-196.
[5]
M. Vanneman,; G. Dranoff, Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237-251.
[6]
P. C. Tumeh,; C. L. Harview,; J. H. Yearley,; I. P. Shintaku,; E. J. M. Taylor,; L. Robert,; B. Chmielowski,; M. Spasic,; G. Henry,; V. Ciobanu, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568-571.
[7]
J. M. Michot,; C. Bigenwald,; S. Champiat,; M. Collins,; F. Carbonnel,; S. Postel-Vinay,; A. Berdelou,; A. Varga,; R. Bahleda,; A. Hollebecque, et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139-148.
[8]
N. H. Cho,; T. C. Cheong,; J. H. Min,; J. H. Wu,; S. J. Lee,; D. Kim,; J. S. Yang,; S. Kim,; Y. K. Kim,; S. Y. Seong, A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011, 6, 675-682.
[9]
S. Zanganeh,; G. Hutter,; R. Spitler,; O. Lenkov,; M. Mahmoudi,; A. Shaw,; J. S. Pajarinen,; H. Nejadnik,; S. Goodman,; M. Moseley, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 2016, 11, 986-994.
[10]
G. B. Yang,; L. G. Xu,; Y. Chao,; J. Xu,; X. Q. Sun,; Y. F. Wu,; R. Peng,; Z. Liu, Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.
[11]
Q. Chen,; C. Wang,; X. D. Zhang,; G. J. Chen,; Q. Y. Hu,; H. J. Li,; J. Q. Wang,; D. Wen,; Y. Q. Zhang,; Y. F. Lu, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89-97.
[12]
W. Sang,; Z. Zhang,; Y. L. Dai,; X. Y. Chen, Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev. 2019, 48, 3771-3810.
[13]
J. R. Zhou,; G. Tian,; L. J. Zeng,; X. E. Song,; X. W. Bian, Nanoscaled metal-organic frameworks for Biosensing, imaging, and cancer therapy. Adv. Healthc. Mater. 2018, 7, e1800022.
[14]
P. Horcajada,; T. Chalati,; C. Serre,; B. Gillet,; C. Sebrie,; T. Baati,; J. F. Eubank,; D. Heurtaux,; P. Clayette,; C. Kreuz, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172-178.
[15]
M. P. Abucafy,; B. L. Caetano,; B. G. Chiari-Andréo,; B. Fonseca-Santos,; A. M. do Santos,; M. Chorilli,; L. A. Chiavacci, Supramolecular cyclodextrin-based metal-organic frameworks as efficient carrier for anti-inflammatory drugs. Eur. J. Pharm. Biopharm. 2018, 127, 112-119.
[16]
X. Unamuno,; E. Imbuluzqueta,; F. Salles,; P. Horcajada,; M. J. Blanco-Prieto, Biocompatible porous metal-organic framework nanoparticles based on Fe or Zr for gentamicin vectorization. Eur. J. Pharm. Biopharm. 2018, 132, 11-18.
[17]
S. S. Wan,; Q. Cheng,; X. Zeng,; X. Z. Zhang, A Mn(III)-sealed metal-organic framework Nanosystem for redox-unlocked tumor Theranostics. ACS Nano 2019, 13, 6561-6571.
[18]
F. Lyu,; Y. F. Zhang,; R. N. Zare,; J. Ge,; Z. Liu, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett. 2014, 14, 5761-5765.
[19]
S. Z. Wang,; C. M. McGuirk,; M. B. Ross,; S. Y. Wang,; P. C. Chen,; H. Xing,; Y. Liu,; C. A. Mirkin, General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles. J. Am. Chem. Soc. 2017, 139, 9827-9830.
[20]
F. Duan,; X. C. Feng,; X. J. Yang,; W. T. Sun,; Y. Jin,; H. F. Liu,; K. Ge,; Z. H. Li,; J. C. Zhang, A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials 2017, 122, 23-33.
[21]
J. Xiang,; L. G. Xu,; H. Gong,; W. W. Zhu,; C. Wang,; J. Xu,; L. Z. Feng,; L. Cheng,; R. Peng,; Z. Liu, Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano 2015, 9, 6401-6411.
[22]
T. L. Liu,; H. Y. Liu,; C. H. Fu,; L. L. Li,; D. Chen,; Y. Q. Zhang,; F. Q. Tang, Silica nanorattle with enhanced protein loading: A potential vaccine adjuvant. J. Colloid Interface Sci. 2013, 400, 168-174.
[23]
L. X. Liu,; P. C. Ma,; H. Wang,; C. Zhang,; H. F. Sun,; C. Wang,; C. X. Song,; X. G. Leng,; D. L. Kong,; G. L. Ma, Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles. J. Control. Release 2016, 225, 230-239.
[24]
Y. F. Feng,; H. R. Wang,; S. N. Zhang,; Y. Zhao,; J. Gao,; Y. Y. Zheng,; P. Zhao,; Z. J. Zhang,; M. J. Zaworotko,; P. Cheng, et al. Antibodies@MOFs: An in vitro protective coating for preparation and storage of biopharmaceuticals. Adv. Mater. 2019, 31, 1805148.
[25]
K. Wang,; S. M. Wen,; L. H. He,; A. Li,; Y. Li,; H. Q. Dong,; W. Li,; T. B. Ren,; D. L. Shi,; Y. Y. Li, “Minimalist” Nanovaccine constituted from near whole antigen for cancer immunotherapy. ACS Nano 2018, 12, 6398-6409.
[26]
W. Chen,; C. S. Wu, Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine. Dalton Trans. 2018, 47, 2114-2133.
[27]
K. D. Lu,; T. Aung,; N. N. Guo,; R. Weichselbaum,; W. B. Lin, Nanoscale Metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, e1707634.
[28]
G. X. Lan,; K. Y. Ni,; Z. W. Xu,; S. S. Veroneau,; Y. Song,; W. B. Lin, Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670-5673.
[29]
E. Ploetz,; A. Zimpel,; V. Cauda,; D. Bauer,; D. C. Lamb,; C. Haisch,; S. Zahler,; A. M. Vollmar,; S. Wuttke,; H. Engelke, Metal-organic framework nanoparticles induce Pyroptosis in cells controlled by the extracellular pH. Adv. Mater. 2020, 32, 1907267.
[30]
J. Park,; Q. Jiang,; D. W. Feng,; L. Q. Mao,; H. C. Zhou, Size-controlled synthesis of Porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518-3525.
[31]
H. Cheng,; X. Y. Jiang,; R. R. Zheng,; S. J. Zuo,; L. P. Zhao,; G. L. Fan,; B. R. Xie,; X. Y. Yu,; S. Y. Li,; X. Z. Zhang, A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials 2019, 195, 75-85.
[32]
J. Della Rocca,; D. M. Liu,; W. B. Lin, Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem. Res. 2011, 44, 957-968.
[33]
W. Cai,; C. C. Chu,; G. Liu,; Y. X. J. Wáng, Metal-organic framework-based Nanomedicine platforms for drug delivery and molecular imaging. Small 2015, 11, 4806-4822.
[34]
M. Giménez-Marqués,; T. Hidalgo,; C. Serre,; P. Horcajada, Nanostructured metal-organic frameworks and their bio-related applications. Coord. Chem. Rev. 2016, 307, 342-360.
[35]
M. X. Wu,; Y. W. Yang, Metal-Organic Framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.
[36]
P. Horcajada,; R. Gref,; T. Baati,; P. K. Allan,; G. Maurin,; P. Couvreur,; G. Férey,; R. E. Morris,; C. Serre, Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232-1268.
[37]
R. Liu,; T. Yu,; Z. Shi,; Z. Y. Wang, The preparation of metal-organic frameworks and their biomedical application. Int. J. Nanomedicine 2016, 11, 1187-1200.
[38]
A. C. McKinlay,; R. E. Morris,; P. Horcajada,; G. Férey,; R. Gref,; P. Couvreur,; C. Serre, BioMOFs: Metal-organic frameworks for biological and medical applications. Angew. Chem., Int. Ed. 2010, 49, 6260-6266.
[39]
L. C. He,; Y. Liu,; J. Lau,; W. P. Fan,; Q. Y. Li,; C. Zhang,; P. T. Huang,; X. Y. Chen, Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. Nanomedicine 2019, 14, 1343-1365.
[40]
M. E. Davis, The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharmaceutics 2009, 6, 659-668.
[41]
Z. L. Tyrrell,; Y. Q. Shen,; M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog. Polym. Sci. 2010, 35, 1128-1143.
[42]
M. A. Boles,; M. Engel,; D. V. Talapin, Self-assembly of colloidal Nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220-11289.
[43]
A. Rösler,; G. W. M. Vandermeulen,; H. A. Klok, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliver Rev. 2012, 64, 270-279.
[44]
N. Stock,; S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933-969.
[45]
L. Jiao,; J. Y. R. Seow,; W. S. Skinner,; Z. U. Wang,; H. L. Jiang, Metal-organic frameworks: Structures and functional applications. Mater Today 2019, 27, 43-68.
[46]
P. Z. Moghadam,; A. Li,; S. B. Wiggin,; A. D. Tao,; A. G. P. Maloney,; P. A. Wood,; S. C. Ward,; D. Fairen-Jimenez, Development of a cambridge structural database subset: A collection of metal-organic frameworks for past, present, and future. Chem. Mater. 2017, 29, 2618-2625.
[47]
W. G. Lu,; Z. W. Wei,; Z. Y. Gu,; T. F. Liu,; J. Park,; J. Park,; J. Tian,; M. W. Zhang,; Q. Zhang,; T. Gentle III, et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561-5593.
[48]
H. Furukawa,; K. E. Cordova,; M. O'Keeffe,; O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[49]
P. Rocio-Bautista,; I. Taima-Mancera,; J. Pasán,; V. Pino, Metal-organic frameworks in green analytical chemistry. Separations 2019, 6, 33.
[50]
Y. Zhang,; F. M. Wang,; E. G. Ju,; Z. Liu,; Z. W. Chen,; J. S. Ren,; X. G. Qu, Metal-organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater. 2016, 26, 6454-6461.
[51]
F. Liu,; L. Lin,; Y. Zhang,; Y. B. Wang,; S. Sheng,; C. N. Xu,; H. Y. Tian,; X. S. Chen, A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv. Mater. 2019, 31, e1902885.
[52]
Y. Zhang,; C. Q. Liu,; F. M. Wang,; Z. Liu,; J. S. Ren,; X. G. Qu, Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging. Chem. Commun. 2017, 53, 1840-1843.
[53]
Y. Yang,; Q. Q. Chen,; J. P. Wu,; T. B. Kirk,; J. K. Xu,; Z. H. Liu,; W. Xue, Reduction-responsive Codelivery system based on a metal-organic framework for eliciting potent cellular immune response. ACS Appl. Mater. Interfaces 2018, 10, 12463-12473.
[54]
Y. Liu,; Y. L. Zhao,; X. Y. Chen, Bioengineering of metal-organic frameworks for Nanomedicine. Theranostics 2019, 9, 3122-3133.
[55]
Z. J. Wang,; Y. Fu,; Z. Z. Kang,; X. G. Liu,; N. Chen,; Q. Wang,; Y. Q. Tu,; L. H. Wang,; S. P. Song,; D. S. Ling, et al. Organelle-specific triggered release of Immunostimulatory oligonucleotides from intrinsically coordinated DNA-metal-organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 2017, 139, 15784-15791.
[56]
K. D. Lu,; C. B. He,; N. N. Guo,; C. Chan,; K. Y. Ni,; G. X. Lan,; H. D. Tang,; C. Pelizzari,; Y. X. Fu,; M. T. Spiotto, et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600-610.
[57]
K. D. Lu,; C. B. He,; N. N. Guo,; C. Chan,; K. Y. Ni,; R. R. Weichselbaum,; W. B. Lin, Chlorin-based Nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc. 2016, 138, 12502-12510.
[58]
W. J. Zhu,; Y. Yang,; Q. T. Jin,; Y. Chao,; L. L. Tian,; J. J. Liu,; Z. L. Dong,; Z. Liu, Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307-1312.
[59]
K. Kim,; S. Lee,; E. Jin,; L. Palanikumar,; J. H. Lee,; J. C. Kim,; J. S. Nam,; B. Jana,; T. H. Kwon,; S. K. Kwak, et al. MOF X biopolymer: Collaborative combination of metal-organic framework and biopolymer for advanced anticancer therapy. ACS Appl. Mater. Interfaces 2019, 11, 27512-27520.
[60]
Y. B. Miao,; W. Y. Pan,; K. H. Chen,; H. J. Wei,; F. L. Mi,; M. Y. Lu,; Y. Chang,; H. W. Sung, Engineering a Nanoscale Al-MOF-armored antigen carried by a “Trojan Horse”-like platform for oral vaccination to induce potent and long-lasting immunity. Adv. Funct. Mater. 2019, 29, 1904828.
[61]
F. Y. Liu,; X. X. He,; H. D. Chen,; J. P. Zhang,; H. M. Zhang,; Z. X. Wang, Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun. 2015, 6, 8003.
[62]
Z. L. Dong,; L. Z. Feng,; Y. Chao,; Y. Hao,; M. C. Chen,; F. Gong,; X. Han,; R. Zhang,; L. Cheng,; Z. Liu, Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2019, 19, 805-815.
[63]
W. S. Chen,; K. Zeng,; H. Liu,; J. Ouyang,; L. Q. Wang,; Y. Liu,; H. Wang,; L. Deng,; Y. N. Liu, Cell membrane camouflaged hollow prussian blue nanoparticles for synergistic Photothermal-/chemotherapy of cancer. Adv. Funct. Mater. 2017, 27, 1605795.
[64]
S. Rojas,; T. Devic,; P. Horcajada, Metal organic frameworks based on bioactive components. J. Mater. Chem. B 2017, 5, 2560-2573.
[65]
J. An,; O. K. Farha,; J. T. Hupp,; E. Pohl,; J. I. Yeh,; N. L. Rosi, Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun. 2012, 3, 604.
[66]
X. F. Zhong,; X. Sun, Nanomedicines based on nanoscale metal-organic frameworks for cancer immunotherapy. Acta Pharmacol. Sin. 2020, 41, 928-935.
[67]
S. X. Li,; K. K. Wang,; Y. J. Shi,; Y. N. Cui,; B. L. Chen,; B. He,; W. B. Dai,; H. Zhang,; X. Q. Wang,; C. L. Zhong, et al. Novel biological functions of ZIF-NP as a delivery vehicle: High pulmonary accumulation, favorable biocompatibility, and improved therapeutic outcome. Adv. Funct. Mater. 2016, 26, 2715-2727.
[68]
M. Hoop,; C. F. Walde,; R. Riccò,; F. Mushtaq,; A. Terzopoulou,; X. Z. Chen,; A. J. deMello,; C. J. Doonan,; P. Falcaro,; B. J. Nelson, et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl. Mater. Today 2018, 11, 13-21.
[69]
T. Simon-Yarza,; T. Baati,; F. Neffati,; L. Njim,; P. Couvreur,; C. Serre,; R. Gref,; M. F. Najjar,; A. Zakhama,; P. Horcajada, In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration. Int. J. Pharm. 2016, 511, 1042-1047.
[70]
T. Simon-Yarza,; A. Mielcarek,; P. Couvreur,; C. Serre, Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, e1707365.
[71]
J. J. Shi,; P. W. Kantoff,; R. Wooster,; O. C. Farokhzad, Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20-37.
[72]
V. Agostoni,; P. Horcajada,; M. Noiray,; M. Malanga,; A. Aykaç,; L. Jicsinszky,; A. Vargas-Berenguel,; N. Semiramoth,; S. Daoud-Mahammed,; V. Nicolas, et al. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci. Rep. 2015, 5, 7925.
[73]
I. Abánades Lázaro,; S. Haddad,; S. Sacca,; C. Orellana-Tavra,; D. Fairen-Jimenez,; R. S. Forgan, Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem 2017, 2, 561-578.
[74]
S. Wuttke,; S. Braig,; T. Preiß,; A. Zimpel,; J. Sicklinger,; C. Bellomo,; J. O. Rädler,; A. M. Vollmar,; T. Bein, MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chem. Commun. 2015, 51, 15752-15755.
[75]
B. Illes,; P. Hirschle,; S. Barnert,; V. Cauda,; S. Wuttke,; H. Engelke, Exosome-coated metal-organic framework nanoparticles: An efficient drug delivery platform. Chem. Mater. 2017, 29, 8042-8046.
[76]
K. A. Hay,; L. A. Hanafi,; D. Li,; J. Gust,; W. C. Liles,; M. M. Wurfel,; J. A. López,; J. M. Chen,; D. Chung,; S. Harju-Baker, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017, 130, 2295-2306.
[77]
K. M. Au,; A. Satterlee,; Y. Z. Min,; X. Tian,; Y. S. Kim,; J. M. Caster,; L. Z. Zhang,; T. Zhang,; L. Huang,; A. Z. Wang, Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials 2016, 82, 178-193.
[78]
R. H. Fang,; A. V. Kroll,; W. W. Gao,; L. F. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, e1706759.
[79]
L. Zhang,; Z. Z. Wang,; Y. Zhang,; F. F. Cao,; K. Dong,; J. S. Ren,; X. G. Qu, Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic Nanoreactor for starvation-activated colon cancer therapy. ACS Nano 2018, 12, 10201-10211.
[80]
S. Y. Li,; H. Cheng,; W. X. Qiu,; L. Zhang,; S. S. Wan,; J. Y. Zeng,; X. Z. Zhang, Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 2017, 142, 149-161.
[81]
D. Liu,; F. Yang,; F. Xiong,; N. Gu, The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306-1323.
[82]
K. Kessenbrock,; V. Plaks,; Z. Werb, Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52-67.
[83]
W. Cai,; J. Q. Wang,; C. C. Chu,; W. Chen,; C. S. Wu,; G. Liu, Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 2019, 6, 1801526.
[84]
Y. T. Qiao,; J. Q. Wan,; L. Q. Zhou,; W. Ma,; Y. Y. Yang,; W. X. Luo,; Z. Q. Yu,; H. X. Wang, Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wires Nanomed. Nanobi. 2019, 11, e1527.
[85]
G. Cutrone,; J. W. Qiu,; M. Menendez-Miranda,; J. M. Casas-Solvas,; A. Aykac,; X. Li,; D. Foulkes,; B. Moreira-Alvarez,; J. R. Encinar,; C. Ladaviere, et al. Comb-like dextran copolymers: A versatile strategy to coat highly porous MOF nanoparticles with a PEG shell. Carbohyd. Polym. 2019, 223, 115085.
[86]
M. SK,; S. Banesh,; V. Trivedi,; S. Biswas, Selective and sensitive sensing of hydrogen peroxide by a Boronic acid functionalized metal-organic framework and its application in live-cell imaging. Inorg. Chem. 2018, 57, 14574-14581.
[87]
K. E. Dekrafft,; W. S. Boyle,; L. M. Burk,; O. Z. Zhou,; W. B. Lin, Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. J. Mater. Chem. 2012, 22, 18139-18144.
[88]
T. Hidalgo,; M. Giménez-Marqués,; E. Bellido,; J. Avila,; M. C. Asensio,; F. Salles,; M. V. Lozano,; M. Guillevic,; R. Simón-Vázquez,; A. González-Fernández, et al. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci. Rep. 2017, 7, 43099.
[89]
W. Q. Wang,; L. Wang,; Y. Li,; S. Liu,; Z. G. Xie,; X. B. Jing, Nanoscale polymer metal-organic framework hybrids for effective Photothermal therapy of colon cancers. Adv. Mater. 2016, 28, 9320-9325.
[90]
D. D. Wang,; H. H. Wu,; J. J. Zhou,; P. P. Xu,; C. L. Wang,; R. H. Shi,; H. B. Wang,; H. Wang,; Z. Guo,; Q. W. Chen, In situ one-pot synthesis of MOF-Polydopamine hybrid Nanogels with enhanced Photothermal effect for targeted cancer therapy. Adv. Sci. 2018, 5, 1800287.
[91]
E. Bellido,; T. Hidalgo,; M. V. Lozano,; M. Guillevic,; R. Simón-Vázquez,; M. J. Santander-Ortega,; Á. González-Fernández,; C. Serre,; M. J. Alonso,; P. Horcajada, Heparin-engineered mesoporous iron metal-organic framework nanoparticles: Toward stealth drug nanocarriers. Adv. Healthc. Mater. 2015, 4, 1246-1257.
[92]
G. Cheng,; W. Q. Li,; L. Ha,; X. H. Han,; S. J. Hao,; Y. Wan,; Z. G. Wang,; F. P. Dong,; X. Zou,; Y. W. Mao, et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of Biofunctional proteins. J. Am. Chem. Soc. 2018, 140, 7282-7291.
[93]
W. L. Liu,; M. Z. Zou,; T. Liu,; J. Y. Zeng,; X. Li,; W. Y. Yu,; C. X. Li,; J. J. Ye,; W. Song,; J. Feng, et al. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nat. Commun. 2019, 10, 3199.
[94]
X. F. Zhong,; Y. T. Zhang,; L. Tan,; T. Zheng,; Y. Y. Hou,; X. Y. Hong,; G. S. Du,; X. Y. Chen,; Y. D. Zhang,; X. Sun, An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses. J. Control. Release 2019, 300, 81-92.
[95]
W. L. Liu,; M. Z. Zou,; T. Liu,; J. Y. Zeng,; X. Li,; W. Y. Yu,; C. X. Li,; J. J. Ye,; W. Song,; J. Feng, et al. Expandable immunotherapeutic Nanoplatforms engineered from Cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv. Mater. 2019, 31, e1900499.
[96]
M. Z. Zou,; W. L. Liu,; C. X. Li,; D. W. Zheng,; J. Y. Zeng,; F. Gao,; J. J. Ye,; X. Z. Zhang, A multifunctional biomimetic Nanoplatform for relieving hypoxia to enhance chemotherapy and inhibit the PD-1/PD-L1 axis. Small 2018, 14, 1801120.
[97]
K. Y. Ni,; T. Aung,; S. Y. Li,; N. Fatuzzo,; X. J. Liang,; W. B. Lin, Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy. Chem 2019, 5, 1892-1913.
[98]
J. C. Yang,; Y. Shang,; Y. H. Li,; Y. Cui,; X. B. Yin, An “all-in-one” antitumor and anti-recurrence/metastasis nanomedicine with multi-drug co-loading and burst drug release for multi-modality therapy. Chem. Sci. 2018, 9, 7210-7217.
[99]
Q. V. Le,; J. Choi,; Y. K. Oh, Nano delivery systems and cancer immunotherapy. J. Pharm. Investig. 2018, 48, 527-539.
[100]
R. L. Coffman,; A. Sher,; R. A. Seder, Vaccine adjuvants: Putting innate immunity to work. Immunity 2010, 33, 492-503.
[101]
N. Hanagata, CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int. J. Nanomed. 2017, 12, 515-531.
[102]
H. Q. Qian,; B. R. Liu,; X. Q. Jiang, Application of nanomaterials in cancer immunotherapy. Mater Today Chem. 2018, 7, 53-64.
[103]
H. J. Zhang,; W. Chen,; K. Gong,; J. H. Chen, Nanoscale Zeolitic Imidazolate framework-8 as efficient vehicles for enhanced delivery of CpG Oligodeoxynucleotides. ACS Appl. Mater. Interfaces 2017, 9, 31519-31525.
[104]
Y. Tao,; E. G. Ju,; Z. H. Li,; J. S. Ren,; X. G. Qu, Engineered CpG-antigen conjugates protected gold Nanoclusters as smart self-vaccines for enhanced immune response and cell imaging. Adv. Funct. Mater. 2014, 24, 1004-1010.
[105]
Y. Krishnamachari,; A. K. Salem, Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev. 2009, 61, 205-217.
[106]
S. G. Reed,; S. Bertholet,; R. N. Coler,; M. Friede, New horizons in adjuvants for vaccine development. Trends Immunol. 2009, 30, 23-32.
[107]
D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252-264.
[108]
C. D. Zahm,; L. E. Johnson,; D. G. McNeel, Increased indoleamine 2, 3-dioxygenase activity and expression in prostate cancer following targeted immunotherapy. Cancer Immunol. Immun. 2019, 68, 1661-1669.
[109]
Z. C. Sun,; Y. X. Fu,; H. Peng, Targeting tumor cells with antibodies enhances anti-tumor immunity. Biophys. Rep. 2018, 4, 243-253.
[110]
C. J. Roberts, Therapeutic protein aggregation: Mechanisms, design, and control. Trends Biotechnol. 2014, 32, 372-380.
[111]
T. T. Hansel,; H. Kropshofer,; T. Singer,; J. A. Mitchell,; A. J. George, The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325-338.
[112]
M. Binnewies,; E. W. Roberts,; K. Kersten,; V. Chan,; D. F. Fearon,; M. Merad,; L. M. Coussens,; D. I. Gabrilovich,; S. Ostrand-Rosenberg,; C. C. Hedrick, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541-550.
[113]
J. Xu,; R. Saklatvala,; S. Mittal,; S. Deshmukh,; A. Procopio, Recent progress of potentiating immune checkpoint blockade with external stimuli-an industry perspective. Adv. Sci. 2020, 7, 1903394.
[114]
J. Galon,; D. Bruni, Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197-218.
[115]
W. Li,; J. Yang,; L. H. Luo,; M. S. Jiang,; B. Qin,; H. Yin,; C. Q. Zhu,; X. L. Yuan,; J. L. Zhang,; Z. Y. Luo, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.
[116]
Y. Zhang,; F. M. Wang,; C. Q. Liu,; Z. Z. Wang,; L. H. Kang,; Y. Y. Huang,; K. Dong,; J. S. Ren,; X. G. Qu, Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651-661.
[117]
X. Y. Ma,; X. L. Ren,; X. D. Guo,; C. H. Fu,; Q. Wu,; L. F. Tan,; H. B. Li,; W. Zhang,; X. D. Chen,; H. S. Zhong, et al. Multifunctional iron-based Metal-Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials 2019, 214, 119223.
[118]
N. Casares,; M. O. Pequignot,; A. Tesniere,; F. Ghiringhelli,; S. Roux,; N. Chaput,; E. Schmitt,; A. Hamai,; S. Hervas-Stubbs,; M. Obeid, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 2005, 202, 1691-1701.
[119]
O. Kepp,; L. Galluzzi,; I. Martins,; F. Schlemmer,; S. Adjemian,; M. Michaud,; A. Q. Sukkurwala,; L. Menger,; L. Zitvogel,; G. Kroemer, Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metast. Rev. 2011, 30, 61-69.
[120]
M. Hallek,; K. Fischer,; G. Fingerle-Rowson,; A. M. Fink,; R. Busch,; J. Mayer,; M. Hensel,; G. Hopfinger,; G. Hess,; U. von Grunhagen, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: A randomised, open-label, phase 3 trial. Lancet 2010, 376, 1164-1174.
[121]
J. Q. Lu,; X. S. Liu,; Y. P. Liao,; F. Salazar,; B. B. Sun,; W. Jiang,; C. H. Chang,; J. H. Jiang,; X. Wang,; A. M. Wu, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 2017, 8, 1811.
[122]
W. Yang,; Y. B. Bai,; Y. Xiong,; J. Zhang,; S. K. Chen,; X. J. Zheng,; X. B. Meng,; L. Y. Li,; J. Wang,; C. G. Xu, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 2016, 531, 651-655.
[123]
J. Lei,; H. J. Wang,; D. M. Zhu,; Y. B. Wan,; L. Yin, Combined effects of avasimibe immunotherapy, doxorubicin chemotherapy, and metal-organic frameworks nanoparticles on breast cancer. J. Cell. Physiol. 2020, 235, 4814-4823.
[124]
D. Schaue, A century of radiation therapy and adaptive immunity. Front. Immunol. 2017, 8, 431.
[125]
Q. Chen,; J. W. Chen,; Z. J. Yang,; J. Xu,; L. G. Xu,; C. Liang,; X. Han,; Z. Liu, Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019, 31, e1802228.
[126]
C. Twyman-Saint Victor,; A. J. Rech,; A. Maity,; R. Rengan,; K. E. Pauken,; E. Stelekati,; J. L. Benci,; B. H. Xu,; H. Dada,; P. M. Odorizzi, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015, 520, 373-377.
[127]
K. Y. Ni,; G. X. Lan,; C. Chan,; B. Quigley,; K. D. Lu,; T. Aung,; N. N. Guo,; P. La Riviere,; R. R. Weichselbaum,; W. B. Lin, Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 2018, 9, 2351.
[128]
P. Retif,; S. Pinel,; M. Toussaint,; C. Frochot,; R. Chouikrat,; T. Bastogne,; M. Barberi-Heyob, Nanoparticles for radiation therapy enhancement: The key parameters. Theranostics 2015, 5, 1030-1044.
[129]
E. Paszko,; C. Ehrhardt,; M. O. Senge,; D. P. Kelleher,; J. V. Reynolds, Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther. 2011, 8, 14-29.
[130]
K. D. Lu,; C. B. He,; W. B. Lin, Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712-16715.
[131]
K. D. Lu,; C. B. He,; W. B. Lin, A Chlorin-based Nanoscale metal-organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 2015, 137, 7600-7603.
[132]
M. Lismont,; L. Dreesen,; S. Wuttke, Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Adv. Funct. Mater. 2017, 27, 1606314.
[133]
J. Y. Zeng,; M. Z. Zou,; M. K. Zhang,; X. S. Wang,; X. Zeng,; H. J. Cong,; X. Z. Zhang, π-extended Benzoporphyrin-based metal-organic framework for inhibition of tumor metastasis. ACS Nano 2018, 12, 4630-4640.
[134]
L. R. Guo,; D. D. Yan,; D. F. Yang,; Y. J. Li,; X. D. Wang,; O. Zalewski,; B. F. Yan,; W. Lu, Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 2014, 8, 5670-5681.
[135]
Q. Chen,; L. G. Xu,; C. Liang,; C. Wang,; R. Peng,; Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.
[136]
C. Wang,; L. G. Xu,; C. Liang,; J. Xiang,; R. Peng,; Z. Liu, Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014, 26, 8154-8162.
[137]
X. C. Cai,; B. Liu,; M. L. Pang,; J. Lin, Interfacially synthesized Fe-soc-MOF nanoparticles combined with ICG for photothermal/photodynamic therapy. Dalton Trans. 2018, 47, 16329-16336.
[138]
Y. W. Li,; N. Xu,; J. L. Zhou,; W. H. Zhu,; L. T. Li,; M. X. Dong,; H. T. Yu,; L. Wang,; W. S. Liu,; Z. G. Xie, Facile synthesis of a metal-organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomater. Sci. 2018, 6, 2918-2924.
[139]
Y. D. Zhu,; S. P. Chen,; H. Zhao,; Y. Yang,; X. Q. Chen,; J. Sun,; H. S. Fan,; X. D. Zhang, PPy@MIL-100 nanoparticles as a pH- and near-IR-irradiation-responsive drug carrier for simultaneous Photothermal therapy and chemotherapy of cancer cells. ACS Appl. Mater. Interfaces 2016, 8, 34209-34217.
[140]
Y. Q. Wang,; J. Zhang,; C. Y. Zhang,; B. J. Li,; J. J. Wang,; X. J. Zhang,; D. Li,; S. K. Sun, Functional-protein-assisted fabrication of Fe-gallic acid coordination polymer Nanonetworks for localized Photothermal therapy. ACS Sustainable Chem. Eng. 2018, 7, 994-1005.
[141]
H. Y. Zhang,; J. Zhang,; Q. Li,; A. X. Song,; H. L. Tian,; J. Q. Wang,; Z. H. Li,; Y. X. Luan, Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials 2020, 245, 119983.
[142]
J. Mu,; L. C. He,; P. Huang,; X. Y. Chen, Engineering of nanoscale coordination polymers with biomolecules for advanced applications. Coordin. Chem. Rev. 2019, 399, 213039.
[143]
C. G. Wang,; R. Zhang,; X. M. Wei,; M. Z. Lv,; Z. F. Jiang, Metalloimmunology: The metal ion-controlled immunity. Adv. Immunol. 2020, 145, 187-241.
[144]
B. Englinger,; C. Pirker,; P. Heffeter,; A. Terenzi,; C. R. Kowol,; B. K. Keppler,; W. Berger, Metal drugs and the anticancer immune response. Chem. Rev. 2019, 119, 1519-1624.
Nano Research
Pages 1244-1259
Cite this article:
Chong G, Zang J, Han Y, et al. Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Research, 2021, 14(5): 1244-1259. https://doi.org/10.1007/s12274-020-3179-9
Topics:

946

Views

44

Crossref

N/A

Web of Science

44

Scopus

2

CSCD

Altmetrics

Received: 07 August 2020
Revised: 01 October 2020
Accepted: 10 October 2020
Published: 23 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return