AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Is tumor cell specificity distinct from tumor selectivity in vivo? A quantitative NIR molecular imaging analysis of nanoliposome targeting

Girgis Obaid1,2,,§Kimberley Samkoe3,§Kenneth Tichauer4Shazia Bano1Yeonjae Park3Zachary Silber1Sassan Hodge3Susan Callaghan1Mina Guirguis2Srivalleesha Mallidi1,Brian Pogue3Tayyaba Hasan1,5( )
Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
Thayer School of Engineering, Dartmouth College, Hanover, NH 037551, USA
Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Show Author Information

Graphical Abstract

Abstract

The significance and ability for receptor targeted nanoliposomes (tNLs) to bind to their molecular targets in solid tumors in vivo has been questioned, particularly as the efficiency of their tumor accumulation and selectivity is not always predictive of their efficacy or molecular specificity. This study presents, for the first time, in situ near-infrared (NIR) molecular imaging-based quantitation of the in vivo specificity of tNLs for their target receptors, as opposed to tumor selectivity, which includes influences of enhanced tumor permeability and retention. Results show that neither tumor delivery nor selectivity (tumor-to-normal ratio) of cetuximab and IRDye conjugated tNLs correlate with epidermal growth factor receptor (EGFR) expression in U251, U87, and 9L tumors, and in fact underrepresent their imaging-derived molecular specificity by up to 94.2%. Conversely, their in vivo specificity, which we quantify as the concentration of tNL-reported tumor EGFR provided by NIR molecular imaging, correlates positively with EGFR expression levels in vitro and ex vivo (Pearson’s r = 0.92 and 0.96, respectively). This study provides a unique opportunity to address the problematic disconnect between tNL synthesis and in vivo specificity. The findings encourage their continued adoption as platforms for precision medicine, and facilitates intelligent synthesis and patient customization in order to improve safety profiles and therapeutic outcomes.

Electronic Supplementary Material

Download File(s)
12274_2020_3178_MOESM1_ESM.pdf (4.6 MB)

References

[1]
H. Maeda,; H. Nakamura,; J. Fang, The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71-79.
[2]
G. Obaid,; S. Bano,; S. Mallidi,; M. Broekgaarden,; J. Kuriakose,; Z. Silber,; A. L. Bulin,; Y. C. Wang,; Z. M. Mai,; W. D. Jin, et al. Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmunonanoconjugates: Towards conquering desmoplasia? Nano Lett. 2019, 19, 7573-7587.
[3]
G. Obaid,; I. Chambrier,; M. J. Cook,; D. A. Russell, Targeting the oncofetal Thomsen-Friedenreich disaccharide using jacalin-PEG phthalocyanine gold nanoparticles for photodynamic cancer therapy. Angew. Chem., Int. Ed. 2012, 51, 6158-6162.
[4]
G. Obaid,; I. Chambrier,; M. J. Cook,; D. A. Russell, Cancer targeting with biomolecules: A comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem. Photobiol. Sci. 2015, 14, 737-747.
[5]
S. Bano,; G. Obaid,; J. W. R. Swain,; M. Yamada,; B. W. Pogue,; K. Wang,; T. Hasan, NIR Photodynamic destruction of PDAC and HNSCC nodules using triple-receptor-targeted photoimmuno-nanoconjugates: Targeting heterogeneity in cancer. J. Clin. Med. 2020, 9, 2390.
[6]
M. M. Schmidt,; K. D. Wittrup, A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther. 2009, 8, 2861-2871.
[7]
H. Han,; M. E. Davis, Single-antibody, targeted nanoparticle delivery of camptothecin. Mol. Pharmaceutics 2013, 10, 2558-2567.
[8]
C. Mamot,; D. C. Drummond,; C. O. Noble,; V. Kallab,; Z. X. Guo,; K. Hong,; D. B. Kirpotin,; J. W. Park, Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 2005, 65, 11631-11638.
[9]
D. W. Bartlett,; H. Su,; I. J. Hildebrandt,; W. A. Weber,; M. E. Davis, Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 15549-15554.
[10]
D. B. Kirpotin,; D. C. Drummond,; Y. Shao,; M. R. Shalaby,; K. Hong,; U. B. Nielsen,; J. D. Marks,; C. C. Benz,; J. W. Park, Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006, 66, 6732-6740.
[11]
N. Kotagiri,; G. P. Sudlow,; W. J. Akers,; S. Achilefu, Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol. 2015, 10, 370-379.
[12]
Q. Dai,; S. Wilhelm,; D. Ding,; A. M. Syed,; S. Sindhwani,; Y. W. Zhang,; Y. Y. Chen,; P. MacMillan,; W. C. W. Chan, Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018, 12, 8423-8435.
[13]
G. Obaid,; M. Broekgaarden,; A. L. Bulin,; H. C. Huang,; J. Kuriakose,; J. Liu,; T. Hasan, Photonanomedicine: A convergence of photodynamic therapy and nanotechnology. Nanoscale 2016, 8, 12471-12503.
[14]
R. Heukers,; P. M. P. van Bergen en Henegouwen,; S. Oliveira, Nanobody-photosensitizer conjugates for targeted photodynamic therapy. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1441-1451.
[15]
T. Nagaya,; Y. Nakamura,; K. Sato,; T. Harada,; P. L. Choyke,; J. W. Hodge,; J. Schlom,; H. Kobayashi, Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget 2017, 8, 8807-8817.
[16]
N. S. Soukos,; M. R. Hamblin,; S. Keel,; R. L. Fabian,; T. F. Deutsch,; T. Hasan, Epidermal growth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res. 2001, 61, 4490-4496.
[17]
N. Kotagiri,; M. L. Cooper,; M. Rettig,; C. Egbulefu,; J. Prior,; G. Cui,; P. Karmakar,; M. Z. Zhou,; X. X. Yang,; G. Sudlow, et al. Radionuclides transform chemotherapeutics into phototherapeutics for precise treatment of disseminated cancer. Nat. Commun. 2018, 9, 275.
[18]
E. Skovsen,; J. W. Snyder,; J. D. C. Lambert,; P. R. Ogilby, Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. B 2005, 109, 8570-8573.
[19]
D. Kessel, Photodynamic therapy: Promotion of efficacy by a sequential protocol. J. Porphyr. Phthalocyanines 2016, 20, 302-306.
[20]
I. Rizvi,; S. Nath,; G. Obaid,; M. K. Ruhi,; K. Moore,; S. Bano,; D. Kessel,; T. Hasan, A Combination of visudyne and a lipid-anchored liposomal formulation of benzoporphyrin derivative enhances photodynamic therapy efficacy in a 3D model for ovarian cancer. Photochem. Photobiol. 2019, 95, 419-429.
[21]
R. Hudson,; M. Carcenac,; K. Smith,; L. Madden,; O. J. Clarke,; A. Pèlegrin,; J. Greenman,; R. W. Boyle, The development and characterisation of porphyrin isothiocyanate-monoclonal antibody conjugates for photoimmunotherapy. Br. J. Cancer 2005, 92, 1442-1449.
[22]
I. Rizvi,; G. Obaid,; S. Bano,; T. Hasan,; D. Kessel, Photodynamic therapy: Promoting in vitro efficacy of photodynamic therapy by liposomal formulations of a photosensitizing agent. Lasers Surg. Med. 2018, 50, 499-505.
[23]
J. C. Li,; D. Cui,; J. G. Huang,; S. S. He,; Z. B. Yang,; Y. Zhang,; Y. Luo,; K. Y. Pu, Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 12680-12687.
[24]
D. Cui,; J. G. Huang,; X. Zhen,; J. C. Li,; Y. Y. Jiang,; K. Y. Pu, A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 5920-5924.
[25]
ClinicalTrials. gov Identifier: NCT03076372 [Online]. https://clinicaltrials.gov/ct2/show/NCT03076372 (accessed July, 2020).
[26]
ClinicalTrials. gov Identifier: NCT02369198 [Online]. https://clinicaltrials.gov/ct2/show/NCT02369198 (accessed July, 2020).
[27]
ClinicalTrials. gov Identifier: NCT01304797 [Online]. https://clinicaltrials.gov/ct2/show/results/NCT01304797 (accessed July, 2020).
[28]
ClinicalTrials. gov Identifier: NCT01517464 [Online]. https://clinicaltrials.gov/ct2/show/NCT01517464 (accessed July, 2020).
[29]
P. M. Harari,; S. M. Huang, Head and neck cancer as a clinical model for molecular targeting of therapy: Combining EGFR blockade with radiation. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 427-433.
[30]
H. J. Lee,; A. N. Seo,; E. J. Kim,; M. H. Jang,; Y. J. Kim,; J. H. Kim,; S. W. Kim,; H. S. Ryu,; I. A. Park,; S. A. Im, et al. Prognostic and predictive values of EGFR overexpression and EGFR copy number alteration in HER2-positive breast cancer. Br. J. Cancer 2015, 112, 103-111.
[31]
A. A. Hashmi,; S. Naz,; S. K. Hashmi,; M. Irfan,; Z. F. Hussain,; E. Y. Khan,; H. Asif,; N. Faridi, Epidermal Growth Factor Receptor (EGFR) overexpression in triple-negative breast cancer: Association with clinicopathologic features and prognostic parameters. Surg. Exp. Pathol. 2019, 2, 6.
[32]
N. Shinojima,; K. Tada,; S. Shiraishi,; T. Kamiryo,; M. Kochi,; H. Nakamura,; K. Makino,; H. Saya,; H. Hirano,; J. I. Kuratsu, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res. 2003, 63, 6962-6970.
[33]
K. M. Tichauer,; K. S. Samkoe,; K. J. Sexton,; S. K. Hextrum,; H. H. Yang,; W. S. Klubben,; J. R. Gunn,; T. Hasan,; B. W. Pogue, In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging. Mol. Imaging Biol. 2012, 14, 584-592.
[34]
K. S. Samkoe,; K. M. Tichauer,; J. R. Gunn,; W. A. Wells,; T. Hasan,; B. W. Pogue, Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach. Cancer Res. 2014, 74, 7465-7474.
[35]
W. S. Rasband, ImageJ, U. S. National institutes of health, Bethesda, Maryland, USA, 1997-2018 [Online]. https://imagej.nih.gov/ij/.
[36]
K. M. Tichauer,; K. S. Samkoe,; K. J. Sexton,; J. R. Gunn,; T. Hasan,; B. W. Pogue, Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging. J. Biomed. Opt. 2012, 17, 066001.
[37]
K. Maruyama,; T. Takizawa,; T. Yuda,; S. J. Kennel,; L. Huang,; M. Iwatsuru, Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol) s conjugated at their distal terminals to monoclonal antibodies. Biochim. Biophys. Acta 1995, 1234, 74-80.
[38]
J. A. Harding,; C. M. Engbers,; M. S. Newman,; N. I. Goldstein,; S. Zalipsky, Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim. Biophys. Acta 1997, 1327, 181-192.
[39]
M. Shokeen,; E. D. Pressly,; A. Hagooly,; A. Zheleznyak,; N. Ramos,; A. L. Fiamengo,; M. J. Welch,; C. J. Hawker,; C. J. Anderson, Evaluation of multivalent, functional polymeric nanoparticles for imaging applications. ACS Nano 2011, 5, 738-747.
[40]
A. Gabizon,; H. Shmeeda,; Y. Barenholz, Pharmacokinetics of pegylated liposomal doxorubicin: Review of animal and human studies. Clin. Pharmacokinet. 2003, 42, 419-436.
[41]
C. Corbet,; O. Feron, Tumour acidosis: From the passenger to the driver’s seat. Nat. Rev. Cancer 2017, 17, 577-593.
[42]
D. Patel,; A. Lahiji,; S. Patel,; M. Franklin,; X. Jimenez,; D. J. Hicklin,; X. Q. Kang, Monoclonal antibody cetuximab binds to and down-regulates constitutively activated epidermal growth factor receptor vIII on the cell surface. Anticancer Res. 2007, 27, 3355-3366.
[43]
S. C. Semple,; A. Chonn,; P. R. Cullis, Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv. Drug Deliv. Rev. 1998, 32, 3-17.
[44]
A. Gonzalez-Quintela,; R. Alende,; F. Gude,; J. Campos,; J. Rey,; L. M. Meijide,; C. Fernandez-Merino,; C. Vidal, Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin. Exp. Immunol. 2008, 151, 42-50.
[45]
X. Z. Peng,; H. X. Chen,; D. R. Draney,; W. Volcheck,; A. Schutz-Geschwender,; D. M. Olive, A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Anal. Biochem. 2009, 388, 220-228.
[46]
H. Y. Lin,; R. X. Zhang,; J. R. Gunn,; T. V. Esipova,; S. Vinogradov,; D. J. Gladstone,; L. A. Jarvis,; B. W. Pogue, Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation. Phys. Med. Biol. 2016, 61, 3955-3968.
[47]
G. Obaid,; B. Q. Spring,; S. Bano,; T. Hasan, Activatable clinical fluorophore-quencher antibody pairs as dual molecular probes for the enhanced specificity of image-guided surgery. J. Biomed. Opt. 2017, 22, 121607.
[48]
B. Q. Spring,; R. Bryan Sears,; L. Z. Zheng,; Z. M. Mai,; R. Watanabe,; M. E. Sherwood,; D. A. Schoenfeld,; B. W. Pogue,; S. P. Pereira,; E. Villa, et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotechnol. 2016, 11, 378-387.
[49]
S. Pastore,; F. Mascia,; V. Mariani,; G. Girolomoni, The epidermal growth factor receptor system in skin repair and inflammation. J. Invest. Dermatol. 2008, 128, 1365-1374.
[50]
P. Minder,; E. Zajac,; J. P. Quigley,; E. I. Deryugina, EGFR regulates the development and microarchitecture of intratumoral angiogenic vasculature capable of sustaining cancer cell intravasation. Neoplasia 2015, 17, 634-649.
[51]
H. van Cruijsen,; G. Giaccone,; K. Hoekman, Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies. Int. J. Cancer 2005, 117, 883-888.
[52]
D. N. Amin,; K. Hida,; D. R. Bielenberg,; M. Klagsbrun, Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res. 2006, 66, 2173-2180.
[53]
Y. Tundidor,; C. P. García-Hernández,; A. Pupo,; Y. C. Infante,; G. Rojas, Delineating the functional map of the interaction between nimotuzumab and the epidermal growth factor receptor. MABs 2014, 6, 1013-1025.
[54]
J. D. Sato,; T. Kawamoto,; A. D. Le,; J. Mendelsohn,; J. Polikoff,; G. H. Sato, Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med. 1983, 1, 511-529.
[55]
B. A. W. Hoeben,; J. D. M. Molkenboer-Kuenen,; W. J. G. Oyen,; W. J. M. Peeters,; J. H. A. M. Kaanders,; J. Bussink,; O. C. Boerman, Radiolabeled cetuximab: Dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model. Int. J. Cancer 2011, 129, 870-878.
[56]
X. Z. He,; J. L. Cruz,; S. Joseph,; N. Pett,; H. Y. Chew,; Z. K. Tuong,; S. Okano,; G. Kelly,; M. Veitch,; F. Simpson, et al. Characterization of 7A7, an anti-mouse EGFR monoclonal antibody proposed to be the mouse equivalent of cetuximab. Oncotarget 2018, 9, 12250-12260.
[57]
F. Yuan,; M. Leunig,; S. K. Huang,; D. A. Berk,; D. Papahadjopoulos,; R. K. Jain, Mirovascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994, 54, 3352-3356.
[58]
D. C. Drummond,; O. Meyer,; K. Hong,; D. B. Kirpotin,; D. Papahadjopoulos, Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 1999, 51, 691-743.
[59]
M. Juweid,; R. Neumann,; C. Paik,; M. J. Perez-Bacete,; J. Sato,; W. van Osdol,; J. N. Weinstein, Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier. Cancer Res. 1992, 52, 5144-5153.
[60]
J. H. E. Baker,; K. E. Lindquist,; L. A. Huxham,; A. H. Kyle,; J. T. Sy,; A. I. Minchinton, Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts. Clin. Cancer Res. 2008, 14, 2171-2179.
[61]
G. Obaid,; W. D. Jin,; S. Bano,; D. Kessel,; T. Hasan, Nanolipid formulations of benzoporphyrin derivative: Exploring the dependence of nanoconstruct photophysics and photochemistry on their therapeutic index in ovarian cancer cells. Photochem. Photobiol. 2019, 95, 364-377.
[62]
J. W. Snyder,; W. R. Greco,; D. A. Bellnier,; L. Vaughan,; B. W. Henderson, Photodynamic therapy: A means to enhanced drug delivery to tumors. Cancer Res. 2003, 63, 8126-8131.
[63]
H. C. Huang,; I. Rizvi,; J. Liu,; S. Anbil,; A. Kalra,; H. Lee,; Y. Baglo,; N. Paz,; D. Hayden,; S. Pereira, et al. Photodynamic priming mitigates chemotherapeutic selection pressures and improves drug delivery. Cancer Res. 2018, 78, 558-571.
[64]
M. Overchuk,; G. Zheng, Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2018, 156, 217-237.
[65]
R. Muchekehu,; D. G. Liu,; M. Horn,; L. Campbell,; J. Del Rosario,; M. Bacica,; H. Moskowitz,; T. Osothprarop,; A. Dirksen,; V. Doppalapudi, et al. The effect of molecular weight, PK, and valency on tumor biodistribution and efficacy of antibody-based drugs. Transl. Oncol. 2013, 6, 562-572.
[66]
A. Zimpel,; N. Al Danaf,; B. Steinborn,; J. Kuhn,; M. Hohn,; T. Bauer,; P. Hirschle,; W. Schrimpf,; H. Engelke,; E. Wagner, et al. Coordinative binding of polymers to metal-organic framework nanoparticles for control of interactions at the biointerface. ACS Nano 2019, 13, 3884-3895.
[67]
H. P. Sun,; J. H. Su,; Q. S. Meng,; Q. Yin,; L. L. Chen,; W. W. Gu,; P. C. Zhang,; Z. W. Zhang,; H. J. Yu,; S. L. Wang, et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 2016, 28, 9581-9588.
[68]
Z. Chen,; P. F. Zhao,; Z. Y. Luo,; M. B. Zheng,; H. Tian,; P. Gong,; G. H. Gao,; H. Pan,; L. L. Liu,; A. Q. Ma, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049-10057.
[69]
J. Lazarovits,; Y. Y. Chen,; F. Y. Song,; W. Ngo,; A. J. Tavares,; Y. N. Zhang,; J. Audet,; B. Tang,; Q. C. Lin,; M. C. Tleugabulova, et al. Synthesis of patient-specific nanomaterials. Nano Lett. 2019, 19, 116-123.
Nano Research
Pages 1344-1354
Cite this article:
Obaid G, Samkoe K, Tichauer K, et al. Is tumor cell specificity distinct from tumor selectivity in vivo? A quantitative NIR molecular imaging analysis of nanoliposome targeting. Nano Research, 2021, 14(5): 1344-1354. https://doi.org/10.1007/s12274-020-3178-x
Topics:

734

Views

7

Crossref

N/A

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 31 July 2020
Revised: 01 October 2020
Accepted: 11 October 2020
Published: 27 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return