[1]
C. J. M. Melief,; T. van Hall,; R. Arens,; F. Ossendorp,; S. H. van Der Burg, Therapeutic cancer vaccines. J. Clin. Invest. 2015, 125, 3401-3412.
[2]
I. Melero,; G. Gaudernack,; W. Gerritsen,; C. Huber,; G. Parmiani,; S. Scholl,; N. Thatcher,; J. Wagstaff,; C. Zielinski,; I. Faulkner, et al. Therapeutic vaccines for cancer: An overview of clinical trials. Nat. Rev. Clin. Oncol. 2014, 11, 509-524.
[3]
H. Wang,; D. J. Mooney, Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat. Mater. 2018, 17, 761-772.
[4]
W. Y. Chen,; H. L. Zuo,; B. Li,; C. C. Duan,; B. Rolfe,; B. Zhang,; T. J. Mahony,; Z. P. Xu, Clay nanoparticles elicit long-term immune responses by forming biodegradable depots for sustained antigen stimulation. Small 2018, 14, 1704465.
[5]
A. W. Li,; M. C. Sobral,; S. Badrinath,; Y. Choi,; A. Graveline,; A. G. Stafford,; J. C. Weaver,; M. O. Dellacherie,; T. Y. Shih,; O. A. Ali, et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 2018, 17, 528-534.
[6]
Y. F. Xia,; J. Wu,; W. Wei,; Y. Q. Du,; T. Wan,; X. W. Ma,; W. Q. An,; A. Y. Guo,; C. Y. Miao,; H. Yue, et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat. Mater. 2018, 17, 187-194.
[7]
A. A. Itano,; M. K. Jenkins, Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol. 2003, 4, 733-739.
[8]
U. H. Von Andrian,; T. R. Mempel, Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol 2003, 3, 867-878.
[9]
J. G. Cyster, Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J. Exp. Med. 1999, 189, 447-450.
[10]
M. F. Bachmann,; G. T. Jennings, Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787-796.
[11]
J. Liu,; H. J. Li,; Y. L. Luo,; C. F. Xu,; X. J. Du,; J. Z. Du,; J. Wang, Enhanced primary tumor penetration facilitates nanoparticle draining into lymph nodes after systemic injection for tumor metastasis inhibition. ACS Nano 2019, 13, 8648-8658.
[12]
L. X. Zhang,; X. X. Xie,; D. Q. Liu,; Z. P. Xu,; R. T. Liu, Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy. Biomaterials 2018, 174, 54-66.
[13]
H. Sultan,; T. Kumai,; T. Nagato,; J. Wu,; A. M. Salazar,; E. Celis, The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunol. Immunother. 2019, 68, 455-466.
[14]
X. Han,; S. F. Shen,; Q. Fan,; G. J. Chen,; E. Archibong,; G. Dotti,; Z. Liu,; Z. Gu,; C. Wang, Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci. Adv. 2019, 5, eaaw6870.
[15]
V. Bronte,; M. J. Pittet, The spleen in local and systemic regulation of immunity. Immunity 2013, 39, 806-818.
[16]
L. M. Kranz,; M. Diken,; H. Haas,; S. Kreiter,; C. Loquai,; K. C. Reuter,; M. Meng,; D. Fritz,; F. Vascotto,; H. Hefesha, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396-401.
[17]
J. P. Liu,; R. Zhang,; Z. P. Xu, Nanoparticle-based nanomedicines to promote cancer immunotherapy: Recent advances and future directions. Small 2019, 15, 1900262.
[18]
L. X. Zhang,; D. Q. Liu,; S. W. Wang,; X. L. Yu,; M. Ji,; X. X. Xie,; S. Y. Liu,; R. T. Liu, MgAl-layered double hydroxide nanoparticles co-delivering siIDO and Trp2 peptide effectively reduce IDO expression and induce cytotoxic T-lymphocyte responses against melanoma tumor in mice. J. Mater. Chem. B 2017, 5, 6266-6276.
[19]
W. Y. Chen,; B. Zhang,; T. Mahony,; W. Y. Gu,; B. Rolfe,; Z. P. Xu, Efficient and durable vaccine against intimin β of diarrheagenic E. Coli induced by clay nanoparticles. Small 2016, 12, 1627-1639.
[20]
S. Y. Yan,; B. E. Rolfe,; B. Zhang,; Y. H. Mohammed,; W. Y. Gu,; Z. P. Xu, Polarized immune responses modulated by layered double hydroxides nanoparticle conjugated with CpG. Biomaterials 2014, 35, 9508-9516.
[21]
S. Y. Yan,; W. Y. Gu,; B. Zhang,; B. E. Rolfe,; Z. P. Xu, High adjuvant activity of layered double hydroxide nanoparticles and nanosheets in anti-tumour vaccine formulations. Dalton Trans. 2018, 47, 2956-2964.
[22]
Z. P. Xu,; G. S. Stevenson,; C. Q. Lu,; G. Q. Lu,; P. F. Bartlett,; P. P. Gray, Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 2006, 128, 36-37.
[23]
Z. Gu,; H. L. Zuo,; L. Li,; A. H. Wu,; Z. P. P. Xu, Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake. J. Mater. Chem. B 2015, 3, 3331-3339.
[24]
P. R. Wei,; S. H. Cheng,; W. N. Liao,; K. C. Kao,; C. F. Weng,; C. H. Lee, Synthesis of chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging. J. Mater. Chem. 2012, 22, 5503-5513.
[25]
L. X. Zhang,; X. M. Sun,; Z. P. Xu,; R. T. Liu, Development of multifunctional clay-based nanomedicine for elimination of primary invasive breast cancer and prevention of its lung metastasis and distant inoculation. ACS Appl. Mater. Interfaces 2019, 11, 35566-35576.
[26]
V. Raeesi,; L. Y. T. Chou,; W. C. W. Chan, Tuning the drug loading and release of DNA-assembled gold-nanorod superstructures. Adv. Mater. 2016, 28, 8511-8518.
[27]
Z. P. Zhang,; S. Tongchusak,; Y. Mizukami,; Y. J. Kang,; T. Ioji,; M. Touma,; B. Reinhold,; D. B. Keskin,; E. L. Reinherz,; T. Sasada, Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 2011, 32, 3666-3678.
[28]
Q. Zeng,; H. Jiang,; T. Wang,; Z. R. Zhang,; T. Gong,; X. Sun, Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses. J. Controlled Release 2015, 200, 1-12.
[29]
D. Q. Liu,; S. Lu,; L. X. Zhang,; M. Ji,; S. Y. Liu,; S. W. Wang,; R. T. Liu, An indoleamine 2, 3-dioxygenase siRNA nanoparticle-coated and Trp2-displayed recombinant yeast vaccine inhibits melanoma tumor growth in mice. J. Controlled Release 2018, 273, 1-12.
[30]
Z. P. Xu,; M. Niebert,; K. Porazik,; T. L. Walker,; H. M. Cooper,; A. P. J. Middelberg,; P. P. Gray,; P. F. Bartlett,; G. Q. Lu, Subcellular compartment targeting of layered double hydroxide nanoparticles. J. Controlled Release 2008, 130, 86-94.
[31]
D. Q. Liu,; S. Lu,; L. Zhang,; L. X. Zhang,; M. Ji,; X. G. Liu,; Z. Yu,; R. T. Liu, A biomimetic yeast shell vaccine coated with layered double hydroxides induces a robust humoral and cellular immune response against tumors. Nanoscale Adv. 2020, 2, 3494-3506.
[32]
S. J. Choi,; J. H. Choy, Layered double hydroxide nanoparticles as target-specific delivery carriers: Uptake mechanism and toxicity. Nanomedicine 2011, 6, 803-814.
[33]
J. M. Oh,; S. J. Choi,; G. E. Lee,; J. E. Kim,; J. H. Choy, Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chem. Asian J. 2009, 4, 67-73.
[34]
J. M. Oh,; S. J. Choi,; S. T. Kim,; J. H. Choy, Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: Enhanced efficacy due to clathrin-mediated endocytosis. Bioconjugate Chem. 2006, 17, 1411-1417.
[35]
H. Y. Dong,; H. S. Parekh,; Z. P. Xu, Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles. J. Colloid Interface Sci. 2015, 437, 10-16.
[36]
B. Li,; J. Tang,; W. Y. Chen,; G. Y. Hao,; N. Kurniawan,; Z. Gu,; Z. P. Xu, Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy. Biomaterials 2018, 177, 40-51.
[37]
S. M. Moghimi,; H. Hedeman,; I. S. Muir,; L. Illum,; S. S. Davis, An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochi. Biophys. Acta (BBA) -Gen. Subj. 1993, 1157, 233-240.
[38]
S. M. Moghimi,; A. C. Hunter,; T. L. Andresen, Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 481-503.
[39]
M. Cataldi,; C. Vigliotti,; T. Mosca,; M. Cammarota,; D. Capone, Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. Int. J. Mol. Sci. 2017, 18, 1249.
[40]
M. Demoy,; J. P. Andreux,; C. Weingarten,; B. Gouritin,; V. Guilloux,; P. Couvreur, In vitro evaluation of nanoparticles spleen capture. Life Sci. 1999, 64, 1329-1337.
[41]
M. J. Ernsting,; M. Murakami,; A. Roy,; S. D. Li, Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Controlled Release 2013, 172, 782-794.
[42]
L. X. Zhang,; X. M. Sun,; Y. B. Jia,; X. G. Liu,; M. D. Dong,; Z. P. Xu,; R. T. Liu, Nanovaccine’s rapid induction of anti-tumor immunity significantly improves malignant cancer immunotherapy. Nano Today 2020, 35, 100923.
[43]
A. Schroeder,; D. A. Heller,; M. M. Winslow,; J. E. Dahlman,; G. W. Pratt,; R. Langer,; T. Jacks,; D. G. Anderson, Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2012, 12, 39-50.
[44]
F. Li,; Y. Chen,; S. B. Liu,; X. Pan,; Y. L. Liu,; H. T. Zhao,; X. J. Yin,; C. L. Yu,; W. Kong,; Y. Zhang, The effect of size, dose, and administration route on zein nanoparticle immunogenicity in BALB/c mice. Int. J. Nanomedicine 2019, 14, 9917-9928.