Journal Home > Volume 14 , Issue 7

The development of membranes featuring carbon nanotubes (CNTs) have provided possibilities of next-generation solar desalination technologies. For solar desalination, the microstructures and interactions between the filter membrane and seawater play a crucial role in desalination performance. Understanding the mechanisms of water evaporation and ion rejection in confined pores or channels is necessary to optimize the desalting process. Here, using non-equilibrium molecular dynamics simulations, we found that continuous water-water hydrogen bonding network across the rims of CNTs is the key factor in facilitating water transport through CNTs. With the continuous hydrogen bonding network, the water flux is two times of that without the continuous hydrogen bonding network. In CNT arrays, each CNT transports water molecules and rejects salt ions independently. Based on these observations, using CNT arrays consisted with densely packed thin CNTs is the most advisable strategy for evaporation desalination, possessing high transport flux as well as maintaining high salt rejection.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination

Show Author's information Yaqi Hou1Miao Wang2Xinyu Chen1Xu Hou1,2,3,4,5,6( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
College of Materials, Xiamen University, Xiamen 361005, China
Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
Tan Kah Kee Innovation Laboratory, Xiamen 361102, China
CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The development of membranes featuring carbon nanotubes (CNTs) have provided possibilities of next-generation solar desalination technologies. For solar desalination, the microstructures and interactions between the filter membrane and seawater play a crucial role in desalination performance. Understanding the mechanisms of water evaporation and ion rejection in confined pores or channels is necessary to optimize the desalting process. Here, using non-equilibrium molecular dynamics simulations, we found that continuous water-water hydrogen bonding network across the rims of CNTs is the key factor in facilitating water transport through CNTs. With the continuous hydrogen bonding network, the water flux is two times of that without the continuous hydrogen bonding network. In CNT arrays, each CNT transports water molecules and rejects salt ions independently. Based on these observations, using CNT arrays consisted with densely packed thin CNTs is the most advisable strategy for evaporation desalination, possessing high transport flux as well as maintaining high salt rejection.

Keywords: carbon nanotubes, desalination, hydrogen bonding network, facilitated water transport, salt rejection

References(54)

[1]
M, C.; Yadav, A. Water desalination system using solar heat: A review. Renew. Sust. Energy Rev. 2017, 67, 1308-1330.
[2]
Yang, T. S.; Lin, H.; Lin, K. T.; Jia, B. H. Carbon-based absorbers for solar evaporation: Steam generation and beyond. Sustain. Mater. Technol. 2020, 25, e00182.
[3]
Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. W.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031-1041.
[4]
Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953-13958.
[5]
Wang, M.; Meng, H. Q.; Wang, D.; Yin, Y. J.; Stroeve, P.; Zhang, Y. M.; Sheng, Z. Z.; Chen, B. Y.; Zhan, K.; Hou, X. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 2019, 31, 1805130.
[6]
Wang, M.; Hou, Y.; Yu, L.; Hou, X. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano Lett. 2020, 20, 6937-6946.
[7]
Daer, S.; Kharraz, J.; Giwa, A.; Hasan, S. W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination 2015, 367, 37-48.
[8]
Humplik, T.; Lee, J.; O’Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R. et al. Nanostructured materials for water desalination. Nanotechnology 2011, 22, 292001.
[9]
Yang, H. Y.; Han, Z. J.; Yu, S. F.; Pey, K. L.; Ostrikov, K.; Karnik, R. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun. 2013, 4, 2220.
[10]
Zou, S. Q.; Smith, E. D.; Lin, S. H.; Martin, S. M.; He, Z. Mitigation of bidirectional solute flux in forward osmosis via membrane surface coating of zwitterion functionalized carbon nanotubes. Environ. Int. 2019, 131, 104970.
[11]
Shawky, H. A.; Chae, S. R.; Lin, S. H.; Wiesner, M. R. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination 2011, 272, 46-50.
[12]
Vikrant, K.; Kumar, V.; Vellingiri, K.; Kim, K. H. Nanomaterials for the abatement of cadmium (II) ions from water/wastewater. Nano Res. 2019, 12, 1489-1507.
[13]
Zhu, Y. L.; Zhan, K.; Hou, X. Interface design of nanochannels for energy utilization. ACS Nano 2018, 12, 908-911.
[14]
Hou, X.; Jiang, L. Learning from nature: Building bio-inspired smart nanochannels. ACS Nano 2009, 3, 3339-3342.
[15]
Aoun, B.; Russo, D. Nano-confinement of biomolecules: Hydrophilic confinement promotes structural order and enhances mobility of water molecules. Nano Res. 2016, 9, 273-281.
[16]
Joseph, S.; Aluru, N. R. Why are carbon nanotubes fast transporters of water? Nano Lett. 2008, 8, 452-458.
[17]
Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 2008, 112, 1427-1434.
[18]
Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034-1037.
[19]
Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188-190.
[20]
Pascal, T. A.; Goddard, W. A.; Jung, Y. Entropy and the driving force for the filling of carbon nanotubes with water. Proc. Natl. Acad. Sci. USA 2011, 108, 11794-11798.
[21]
Chan, Y.; Hill, J. M. Modeling on ion rejection using membranes comprising ultra-small radii carbon nanotubes. Eur. Phys. J. B 2012, 85, 56.
[22]
Rikhtehgaran, S.; Lohrasebi, A. Water desalination by a designed nanofilter of graphene-charged carbon nanotube: A molecular dynamics study. Desalination 2015, 365, 176-181.
[23]
Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.
[24]
Secchi, E.; Marbach, S.; Niguès, A.; Stein, D.; Siria, A.; Bocquet, L. Massive radius-dependent flow slippage in carbon nanotubes. Nature 2016, 537, 210-213.
[25]
Noy, A.; Park, H. G.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Bakajin, O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2, 22-29.
[26]
Rivera, J. L.; Starr, F. W. Rapid transport of water via a carbon nanotube syringe. J. Phys. Chem. C 2010, 114, 3737-3742.
[27]
Choi, W.; Ulissi, Z. W.; Shimizu, S. F. E.; Bellisario, D. O.; Ellison, M. D.; Strano, M. S. Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes. Nat. Commun. 2013, 4, 2397.
[28]
Song, C.; Corry, B. Intrinsic ion selectivity of narrow hydrophobic pores. J. Phys. Chem. B 2009, 113, 7642-7649.
[29]
Chan, Y.; Hill, J. M. Ion selectivity using membranes comprising functionalized carbon nanotubes. J. Math. Chem. 2013, 51, 1258-1273.
[30]
Corry, B. Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology. Energy Environ. Sci. 2011, 4, 751-759.
[31]
Fornasiero, F.; Park, H. G.; Holt, J. K.; Stadermann, M.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA 2008, 105, 17250-17255.
[32]
Liu, J.; Shi, G. S.; Guo, P.; Yang, J. R.; Fang, H. P. Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 2015, 115, 164502.
[33]
Melillo, M.; Zhu, F. Q.; Snyder, M. A.; Mittal, J. Water transport through nanotubes with varying interaction strength between tube wall and water. J. Phys. Chem. Lett. 2011, 2, 2978-2983.
[34]
Zhao, K. W.; Wu, H. Y. Fast water thermo-pumping flow across nanotube membranes for desalination. Nano Lett. 2015, 15, 3664-3668.
[35]
Qiu, H.; Shen, R.; Guo, W. L. Vibrating carbon nanotubes as water pumps. Nano Res. 2011, 4, 284-289.
[36]
Razmkhah, M.; Moosavi, F.; Mosavian, M. T. H.; Ahmadpour, A. Does electric or magnetic field affect reverse osmosis desalination? Desalination 2018, 432, 55-63.
[37]
Köfinger, J.; Hummer, G.; Dellago, C. Single-file water in nanopores. Phys. Chem. Chem. Phys. 2011, 13, 15403-15417.
[38]
Ohba, T.; Kaneko, K.; Endo, M.; Hata, K.; Kanoh, H. Rapid water transportation through narrow one-dimensional channels by restricted hydrogen bonds. Langmuir 2013, 29, 1077-1082.
[39]
Tunuguntla, R. H.; Henley, R. Y.; Yao, Y. C.; Pham, T. A.; Wanunu, M.; Noy, A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792-796.
[40]
Lee, J.; Laoui, T.; Karnik, R. Nanofluidic transport governed by the liquid/vapour interface. Nat. Nanotechnol. 2014, 9, 317-323.
[41]
Sisan, T. B.; Lichter, S. The end of nanochannels. Microfluid Nanofluidics 2011, 11, 787-791.
[42]
Walther, J. H.; Ritos, K.; Cruz-Chu, E. R.; Megaridis, C. M.; Koumoutsakos, P. Barriers to superfast water transport in carbon nanotube membranes. Nano Lett. 2013, 13, 1910-1914.
[43]
Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10, 4067-4073.
[44]
Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P. et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637-1641.
[45]
Swiatla-Wojcik, D. Evaluation of the criteria of hydrogen bonding in highly associated liquids. Chem. Phys. 2007, 342, 260-266.
[46]
Kalinichev, A. G.; Bass, J. D. Hydrogen bonding in supercritical water: A Monte Carlo simulation. Chem. Phys. Lett. 1994, 231, 301-307.
[47]
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics; Sandia National Labs., Albuquerque, NM (United States): 1993.
[48]
Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157-2164.
[49]
Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 1984, 106, 765-784.
[50]
Izadi, S.; Onufriev, A. V. Accuracy limit of rigid 3-point water models. J. Chem. Phys. 2016, 145, 074501.
[51]
Cygan, R. T.; Liang, J. J.; Kalinichev, A. G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255-1266.
[52]
Holz, M.; Heil, S. R.; Sacco, A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2000, 2, 4740-4742.
[53]
Easteal, A. J.; Price, W. E.; Woolf, L. A. Diaphragm cell for high-temperature diffusion measurements. Tracer diffusion coefficients for water to 363 K. J. Chem. Soc., Faraday Trans. 1 1989, 85, 1091-1097.
[54]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33-38.
Video
12274_2020_3173_MOESM2_ESM.mp4
12274_2020_3173_MOESM3_ESM.mp4
File
12274_2020_3173_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 August 2020
Revised: 07 October 2020
Accepted: 10 October 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors gratefully acknowledge supports from the National Natural Science Foundation of China (Grant Nos. 21975209, 21673197, 51706191, and 21621091), the National Key R&D Program of China (Grant No. 2018YFA0209500), the 111 Project (Grant No. B16029), the Fundamental Research Funds for the Central Universities (Grant No. 20720190037), the Natural Science Foundation of Fujian Province of China (Grant No. 2018J06003), and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences.

Return