AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrophobic ionic liquid-in-polymer composites for ultrafast, linear response and highly sensitive humidity sensing

Xuanliang Zhao1Kanglin Zhou2Yujia Zhong1Peng Liu1Zechen Li1Jialiang Pan1Yu Long3Meirong Huang1Abdelrahman Brakat1Hongwei Zhu1( )
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Department of Mechanical Engineering, University of California, Berkeley, USA
Show Author Information

Graphical Abstract

Abstract

Traditional ionic liquids are sensitive to humidity but with long response time and nonlinear response. Pure liquid-state ionic liquids are usually hard for dehydration which have ultralong response time for humidity sensing. The immobilization of ionic liquids provide a possible way for high performance humidity sensing. Hydrophobic materials and structures also promised faster response in humidity sensing, because of easier desorption of water. In this work, we prepared flexible humidity sensitive composites based on hydrophobic ionic liquid and polymer. The combination of hydrophobic ionic liquid with hydrophobic polymer realized linear response, high sensitivity with low hysteresis to humidity. By adjusting the ratio of ionic liquid, not only the impedance but also the hydrophobicity of composite could be modulated, which had a significant influence on the humidity sensing performance. The morphology and microstructure of the material also affected its interaction with water molecules. Due to the diverse processing methods of polymer, highly transparent film fabricated by spinning-coating and nanofibrous membrane fabricated by electrospinning could be prepared and exhibited different response time, which could be used for different application scenarios. Especially, the fibrous membrane made with electrospinning method showed an ultrafast response and could distinguish up to 120 Hz humidity change, due to its fibrous structure with high specific surface area. The humidity sensors with ultrafast, linear response and high sensitivity showed potential applications in human respiratory monitoring and flexible non-contact switch. To better show the multifunction of ionic liquid-polymer composite, as a proof of concept, we fabricated an integrated humidity sensitive color change device by utilizing lower ionic liquid content composite for sensing in the humidity sensing module and higher ionic liquid content composite as the electrolyte in the electrochromic module.

Electronic Supplementary Material

Download File(s)
12274_2020_3172_MOESM1_ESM.pdf (1.4 MB)

References

[1]
M. Y. Xie,; K. Hisano,; M. Z. Zhu,; T. Toyoshi,; M. Pan,; S. Okada,; O. Tsutsumi,; S. Kawamura,; C. Bowen, Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 2019, 4, 1800626.
[2]
C. Abels,; V. M. Mastronardi,; F. Guido,; T. Dattoma,; A. Qualtieri,; W. M. Megill,; M. De Vittorio,; F. Rizzi, Nitride-based materials for flexible MEMS tactile and flow sensors in robotics. Sensors 2017, 17, 1080.
[3]
X. D. Wang,; L. Dong,; H. L. Zhang,; R. M. Yu,; C. F. Pan,; Z. L. Wang, Recent progress in electronic skin. Adv. Sci. 2015, 2, 1500169.
[4]
D. Chen,; Q. B. Pei, Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev. 2017, 117, 11239-11268.
[5]
C. Y. Liu,; N. G. Huang,; F. Xu,; J. D. Tong,; Z. W. Chen,; X. C. Gui,; Y. L. Fu,; C. S. Lao, 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin. Polymers 2018, 10, 629.
[6]
Q. T. Tran,; N. E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 2016, 28, 4338-4372.
[7]
Y. R. Yang,; W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465-1491.
[8]
H. G. Yang,; T. Y. Xue,; F. Y. Li,; W. T. Liu,; Y. L. Song, Graphene: Diversified flexible 2D material for wearable vital signs monitoring. Adv. Mater. Technol. 2018, 4, 1800574.
[9]
H. Farahani,; R. Wagiran,; M. N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors 2014, 14, 7881-7939.
[10]
M. A. Najeeb,; Z. Ahmad,; R. A. Shakoor, Organic thin-film capacitive and resistive humidity sensors: A focus review. Adv. Mater. Interfaces 2018, 5, 1800969.
[11]
J. M. Tulliani,; B. Inserra,; D. Ziegler, Carbon-based materials for humidity sensing: A short review. Micromachines 2019, 10, 232.
[12]
C. Lv,; C. Hu,; J. H. Luo,; S. Liu,; Y. Qiao,; Z. Zhang,; J. F. Song,; Y. Shi,; J. G. Cai,; A. Watanabe, Recent advances in graphene-based humidity sensors. Nanomaterials 2019, 9, 422.
[13]
C. Y. Lee,; G. B. Lee, Humidity sensors: A review. Sens. Lett. 2005, 3, 1-15.
[14]
I. Pacheco-Fernández,; V. Pino, Extraction with ionic liquids- organic compounds. In Liquid-Phase Extraction. C. F. Poole,, Ed.; Elsevier: Amsterdam, 2020.
[15]
D. M. Correia,; L. C. Fernandes,; P. M. Martins,; C. García-Astrain,; C. M. Costa,; J. Reguera,; S. Lanceros-Méndez, Ionic liquid-polymer composites: A new platform for multifunctional applications. Adv. Funct. Mater. 2020, 30, 1909736.
[16]
Q. W. Yang,; Z. Q. Zhang,; X. G. Sun,; Y. S. Hu,; H. B. Xing,; S. Dai, Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 2018, 47, 2020-2064.
[17]
Y. S. Ye,; J. Rick,; B. J. Hwang, Ionic liquid polymer electrolytes. J. Mater. Chem. A 2013, 1, 2719-2743.
[18]
M. Watanabe,; M. L. Thomas,; S. G. Zhang,; K. Ueno,; T. Yasuda,; K. Dokko, Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 2017, 117, 7190-7239.
[19]
L. Yin,; S. Li,; X. H. Liu,; T. Y. Yan, Ionic liquid electrolytes in electric double layer capacitors. Sci. China Mater. 2019, 62, 1537-1555.
[20]
Z. Ma,; J. H. Yu,; S. Dai, Preparation of inorganic materials using ionic liquids. Adv. Mater. 2010, 22, 261-285.
[21]
H. Olivier-Bourbigou,; L. Magna,; D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen. 2010, 373, 1-56.
[22]
A. Bhide,; B. Jagannath,; E. Graef,; R. Willis,; S. Prasad, Versatile duplex electrochemical sensor for the detection of CO2 and relative humidity using room temperature ionic liquid. ECS Trans. 2018, 85, 751-765.
[23]
J. Lee,; M. O. F. Emon,; M. Vatani,; J. W. Choi, Effect of degree of crosslinking and polymerization of 3D printable polymer/ionic liquid composites on performance of stretchable piezoresistive sensors. Smart Mater. Struct. 2017, 26, 035043.
[24]
K. F. Lai,; W. Y. Su,; W. T. Chang,; S. H. Cheng, The synergic effect of conducting polymer/ionic liquid composite electrodes on the voltammetric sensing of biomolecules. Int. J. Electrochem. Sci. 2013, 8, 7959-7975.
[25]
J. A. Widegren,; J. W. Magee, Density, Viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. J. Chem. Eng. Data 2007, 52, 2331-2338.
[26]
H. Ota,; K. Chen,; Y. J. Lin,; D. Kiriya,; H. Shiraki,; Z. B. Yu,; T. J. Ha,; A. Javey, Highly deformable liquid-state heterojunction sensors. Nat. Commun. 2014, 5, 5032.
[27]
S. H. Xiao,; J. X. Nie,; R. Tan,; X. C. Duan,; J. M. Ma,; Q. H. Li,; T. H. Wang, Fast-response ionogel humidity sensor for real-time monitoring of breathing rate. Mater. Chem. Front. 2019, 3, 484-491.
[28]
L. L. Wang,; X. C. Duan,; W. Y. Xie,; Q. H. Li,; T. H. Wang, Highly chemoresistive humidity sensing using poly(ionic liquid)s. Chem. Commun. 2016, 52, 8417-8419.
[29]
L. C. Fernandes,; D. M. Correia,; N. Pereira,; C. R. Tubio,; S. Lanceros- Méndez, Highly sensitive humidity sensor based on ionic liquid- polymer composites. ACS Appl. Polym. Mater. 2019, 1, 2723-2730.
[30]
Z. Zhen,; Z. C. Li,; X. L. Zhao,; Y. J. Zhong,; L. Zhang,; Q. Chen,; T. T. Yang,; H. W. Zhu, Formation of uniform water microdroplets on wrinkled graphene for ultrafast humidity sensing. Small 2018, 14, 1703848.
[31]
J. Wu,; Z. X. Wu,; K. Tao,; C. Liu,; B. R. Yang,; X. Xie,; X. Lu, Rapid-response, reversible and flexible humidity sensing platform using a hydrophobic and porous substrate. J. Mater. Chem. B 2019, 7, 2063-2073.
[32]
M. Bjorkqvist,; J. Paski,; J. Salonen,; V. P. Lehto, Studies on hysteresis reduction in thermally carbonized porous silicon humidity sensor. IEEE Sens. J. 2006, 6, 542-547.
[33]
Q. Kuang,; C. S. Lao,; Z. L. Wang,; Z. X. Xie,; L. S. Zheng, High- sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070-6071.
[34]
S. Kano,; K. Kim,; M. Fujii, Fast-response and flexible nanocrystal- based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens. 2017, 2, 828-833.
[35]
S. Mohd-Noor,; H. Jang,; K. Baek,; Y. R. Pei,; A. M. Alam,; Y. H. Kim,; I. S. Kim,; J. H. Choy,; J. K. Hyun, Ultrafast humidity- responsive structural colors from disordered nanoporous titania microspheres. J. Mater. Chem. A 2019, 7, 10561-10571.
[36]
S. Borini,; R. White,; D. Wei,; M. Astley,; S. Haque,; E. Spigone,; N. Harris,; J. Kivioja,; T. Ryhanen, Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166-11173.
[37]
Z. Zhuang,; D. Qi,; C. Y. Ru,; J. Pan,; C. J. Zhao,; H. Na, Fast response and highly sensitive humidity sensors based on CaCl2-doped sulfonated poly (ether ether ketone)s. Sens. Actuators B Chem. 2017, 253, 666-676.
[38]
Z. Y. Zhang,; J. D. Huang,; Q. Yuan,; B. Dong, Intercalated graphitic carbon nitride: A fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor. Nanoscale 2014, 6, 9250-9256.
[39]
Z. Q. Wei,; Z. K. Zhou,; Q. Y. Li,; J. C. Xue,; A. Di Falco,; Z. J. Yang,; J. H. Zhou,; X. H. Wang, Flexible nanowire cluster as a wearable colorimetric humidity sensor. Small 2017, 13, 1700109.
[40]
H. Chi,; Y. J. Liu,; F. K. Wang,; C. B. He, Highly sensitive and fast response colorimetric humidity sensors based on graphene oxides film. ACS Appl. Mater. Interfaces 2015, 7, 19882-19886.
[41]
L. C. Fernandes,; D. M. Correia,; C. Garcia-Astrain,; N. Pereira,; M. Tariq,; J. M. S. S. Esperança,; S. Lanceros-Méndez, Ionic-liquid-based printable materials for thermochromic and thermoresistive applications. ACS Appl. Mater. Interfaces 2019, 11, 20316-20324.
[42]
K. W. Kim,; H. Oh,; J. H. Bae,; H. Kim,; H. C. Moon,; S. H. Kim, Electrostatic-force-assisted dispensing printing of electrochromic gels for low-voltage displays. ACS Appl. Mater. Interfaces 2017, 9, 18994-19000.
[43]
H. C. Moon,; T. P. Lodge,; C. D. Frisbie, Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chem. Mater. 2015, 27, 1420-1425.
Nano Research
Pages 1202-1209
Cite this article:
Zhao X, Zhou K, Zhong Y, et al. Hydrophobic ionic liquid-in-polymer composites for ultrafast, linear response and highly sensitive humidity sensing. Nano Research, 2021, 14(4): 1202-1209. https://doi.org/10.1007/s12274-020-3172-3
Topics:

717

Views

26

Crossref

N/A

Web of Science

26

Scopus

3

CSCD

Altmetrics

Received: 19 July 2020
Revised: 05 September 2020
Accepted: 09 October 2020
Published: 02 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return