Journal Home > Volume 14 , Issue 4

All-inorganic cesium lead halide based perovskite nanocrystals (PNCs) exhibit promising optoelectronic properties, but their poor stability and anion exchange reaction limit their broad commercial applications. Herein, we demonstrated the successful synthesis of blue-green-red emitting CsPbX3 (X = Cl/Br, Br, and Br/I) PNCs via hot injection method, followed by silica-coating and embedding in poly(methylmethacrylate) (PMMA) matrix. The photoluminescence (PL) spectra of SiO2/PMMA-coated PNCs can be tuned continuously by regulating precursor composition ratio, from blue (CsPb(Cl0.5/Br0.5)3; 460 nm) to red (CsPb(Br0.4/I0.6)3 via green (CsPbBr3; 519 nm). The PNCs composite films exhibit improved stability (thermal-, moisture-, and photo-stability) because of the barrier formed by SiO2/PMMA coating and also displayed exceptional photoluminescent quantum yield (PLQY of blue, green, and red-emitting SiO2/PMMA coated PNCs are 37%, 86%, and 71%, respectively) with longer lifetimes inhibiting anion exchange. Eventually, the PNCs-encapsulated SiO2/PMMA composite films were integrated into the UV LED chip as down-converting materials to construct a prototype white-peLED unit. The designed white-peLED unit demonstrated bright white light generating CIE coordinates (0.349, 0.350), a luminous efficiency (LE) of 39.2% and a color rendering index (CRI) of 84.7. The wide color gamut of 121.47% of NTSC and 98.56% of Rec. 2020 is also achieved with the built w-LED system. Therefore, the results demonstrated that CsPbX3 (X = Cl/Br, Br, and Br/I) PNCs@SiO2/PMMA composite films can be employed as efficient UV to visible color conversion materials for white-LEDs and backlighting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of CsPbX3 (X = Cl/Br, Br, and Br/I)@SiO2/PMMA composite films as color-conversion materials for achieving tunable multi-color and white light emission

Show Author's information Varnakavi Naresh1( )Byung Hyo Kim2Nohyun Lee1( )
School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea

Abstract

All-inorganic cesium lead halide based perovskite nanocrystals (PNCs) exhibit promising optoelectronic properties, but their poor stability and anion exchange reaction limit their broad commercial applications. Herein, we demonstrated the successful synthesis of blue-green-red emitting CsPbX3 (X = Cl/Br, Br, and Br/I) PNCs via hot injection method, followed by silica-coating and embedding in poly(methylmethacrylate) (PMMA) matrix. The photoluminescence (PL) spectra of SiO2/PMMA-coated PNCs can be tuned continuously by regulating precursor composition ratio, from blue (CsPb(Cl0.5/Br0.5)3; 460 nm) to red (CsPb(Br0.4/I0.6)3 via green (CsPbBr3; 519 nm). The PNCs composite films exhibit improved stability (thermal-, moisture-, and photo-stability) because of the barrier formed by SiO2/PMMA coating and also displayed exceptional photoluminescent quantum yield (PLQY of blue, green, and red-emitting SiO2/PMMA coated PNCs are 37%, 86%, and 71%, respectively) with longer lifetimes inhibiting anion exchange. Eventually, the PNCs-encapsulated SiO2/PMMA composite films were integrated into the UV LED chip as down-converting materials to construct a prototype white-peLED unit. The designed white-peLED unit demonstrated bright white light generating CIE coordinates (0.349, 0.350), a luminous efficiency (LE) of 39.2% and a color rendering index (CRI) of 84.7. The wide color gamut of 121.47% of NTSC and 98.56% of Rec. 2020 is also achieved with the built w-LED system. Therefore, the results demonstrated that CsPbX3 (X = Cl/Br, Br, and Br/I) PNCs@SiO2/PMMA composite films can be employed as efficient UV to visible color conversion materials for white-LEDs and backlighting.

Keywords: lead halide perovskite nanocrystals, hot-injection method, long term stability, PL quantum yield, SiO2/PMMA encapsulation, white peLED performance

References(62)

[1]
S. Nakamura,; T. Mukai,; M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 1994, 64, 1687-1689.
[2]
Y. Narukawa,; I. Niki,; K. Izuno,; M. Yamada,; Y. Murazaki,; T. Mukai, Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip. Jpn. J. Appl. Phys. 2002, 41, 371.
[3]
J. K. Sheu,; S. J. Chang,; C. H. Kuo,; Y. K., Wu, L. W. Su,; Y. C. Lin,; W. C. Lai,; J. M. Tsai,; G. C. Chi,; R. K. Wu, White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors. IEEE Photonics Technol. Lett. 2003, 15, 18-20.
[4]
J. J. Huang; H. C. Kuo,; S. C. Shen, Nitride Semiconductor Light- Emitting Diodes (LEDs): Materials, Technologies, and Applications; Woodhead Publishing: Oxford, 2014.
[5]
Y. P. Zhang,; L. Luo,; G. T. Chen,; Y. H. Liu,; R. H. Liu; X. C. Chen, Green and red phosphor for LED backlight in wide color gamut LCD. J. Rare Earths 2020, 38, 1-12.
[6]
C. C. Lin,; R. S. Liu, Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2011, 2, 1268-1277.
[7]
P. P. Dai,; S. P. Lee,; T. S. Chan,; C. H. Huang,; Y. W. Chiang,; T. M. Chen, Sr3Ce(PO4)3: Eu2+: A broadband yellow-emitting phosphor for near ultraviolet-pumped white light-emitting devices. J. Mater. Chem. C 2016, 4, 1170-1177.
[8]
M. Cui,; J. D. Wang,; M. M. Shang,; J. H. Li,; Q. Wei,; P. P. Dang,; H. S. Jang,; J. Lin, Full visible light emission in Eu2+, Mn2+-doped Ca9LiY0.667(PO4)7 phosphors based on multiple crystal lattice substitution and energy transfer for warm white LEDs with high colour-rendering. J. Mater. Chem. C 2019, 7, 3644-3655.
[9]
Y. Q. Li,; N. Hirosaki,; R. J. Xie,; T. Takeda,; M. Mitomo, Yellow- orange-emitting CaAlSiN3: Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs. Chem. Mater. 2008, 20, 6704-6714.
[10]
L. Chen,; K. J. Chen,; C. C. Lin,; C. I. Chu,; S. F. Hu,; M. H. Lee;; R. S. Liu, Combinatorial approach to the development of a single mass YVO4: Bi3+, Eu3+ phosphor with red and green dual colors for high color rendering white light-emitting diodes. J. Comb. Chem. 2010, 12, 587-594.
[11]
M. Xia,; X. B. Wu,; Y. Zhong,; H. T. Hintzen,; Z. Zhou,; J. Wang, Photoluminescence properties and energy transfer in a novel Sr8ZnY(PO4)7: Tb3+, Eu3+ phosphor with high thermal stability and its great potential for application in warm white light emitting diodes. J. Mater. Chem. C 2019, 7, 2927-2935.
[12]
S. A. Khan,; A. Jalil,; Q. U. Khan,; R. M. Irfan,; I. Mehmood,; K. Khan,; M. Kiani,; B. B. Dong,; N. Z. Khan,; J. L. Yu, et al. New physical insight into crystal structure, luminescence and optical properties of YPO4: Dy3+∖Eu3+∖Tb3+ single-phase white-light- emitting phosphors. J. Alloys Compd. 2019, 817, 152687.
[13]
J. Jang,; D. E. Yoon,; S. M. Kang,; Y. H. Kim,; I. Lee,; H. Lee,; Y. H. Kim,; D. C. Lee,; B. S. Bae, Exceptionally stable quantum dot/siloxane hybrid encapsulation material for white light-emitting diodes with a wide color gamut. Nanoscale 2019, 11, 14887-14895.
[14]
C. F. Lai,; Y. C. Tien,; H. C. Tong,; C. Z. Zhong,; Y. C. Lee, High- performance quantum dot light-emitting diodes using chip-scale package structures with high reliability and wide color gamut for backlight displays. RSC Adv. 2018, 8, 35966-35972.
[15]
J. P. Deng,; J. L. Li,; Z. Yang,; M. Q. Wang, All-inorganic lead halide perovskites: A promising choice for photovoltaics and detectors. J. Mater. Chem. C 2019, 7, 12415-12440.
[16]
Y. F. Li,; J. Feng,; H. B. Sun, Perovskite quantum dots for light-emitting devices. Nanoscale 2019, 11, 19119-19139.
[17]
M. Bidikoudi,; E. Fresta,; R. D. Costa, White perovskite based lighting devices. Chem. Commun. 2018, 54, 8150-8169.
[18]
Q. A. Akkerman,; V. D’Innocenzo,; S. Accornero,; A. Scarpellini,; A. Petrozza,; M. Prato,; L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276-10281.
[19]
D. Q. Chen,; S. Zhou,; G. L. Fang,; X. Chen,; J. S. Zhong, Fast room- temperature cation exchange synthesis of Mn-doped CsPbCl3 nanocrystals driven by dynamic halogen exchange. ACS Appl. Mater. Interfaces 2018, 10, 39872-39878.
[20]
M. Li,; X. Zhang,; K. M. Postolek,; H. S. Chen,; P. Yang, An anion- driven Sn2+ exchange reaction in CsPbBr3 nanocrystals towards tunable and high photoluminescence. J. Mater. Chem. C 2018, 6, 5506-5513.
[21]
M. G. Jeon,; S. Yun,; A. Kirakosyan,; M. R. Sihn,; S. G. Yoon,; J. Choi, Scale-up synthesis of organometal halide perovskite nanocrystals (MAPbX3, X = Cl, Br, and I). ACS Sustainable Chem. Eng. 2019, 7, 19369-19374.
[22]
D. Amgar,; T. Binyamin,; V. Uvarov,; L. Etgar, Near ultra-violet to mid-visible band gap tuning of mixed cation RbxCs1-xPbX3 (X = Cl or Br) perovskite nanoparticles. Nanoscale 2018, 10, 6060-6068.
[23]
A. Loiudice,; M. Strach,; S. Saris,; D. Chernyshov,; R. Buonsanti, Universal oxide shell growth enables in situ structural studies of perovskite nanocrystals during the anion exchange reaction. J. Am. Chem. Soc. 2019, 141, 8254-8263.
[24]
Q. X. Zhong,; M. H. Cao,; H. C. Hu,; D. Yang,; M. Chen,; P. L. Li,; L. Z. Wu,; Q. Zhang, One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano 2018, 12, 8579-8587.
[25]
H. C. Yoon,; H. Lee,; H. Kang,; J. H. Oh,; Y. R. Do, Highly efficient wide-color-gamut QD-emissive LCDs using red and green perovskite core/shell QDs. J. Mater. Chem. C 2018, 6, 13023-13033.
[26]
X. S. Tang,; J. Yang,; S. Q. Li,; W. W. Chen,; Z. P. Hu,; J. Qiu, CsPbBr3/CdS core/shell structure quantum dots for inverted light- emitting diodes application. Front. Chem. 2019, 7, 499.
[27]
C. Jia,; H. Li,; X. W. Meng,; H. B. Li, CsPbX3/Cs4PbX6 core/shell perovskite nanocrystals. Chem. Commun. 2018, 54, 6300-6303.
[28]
F. Zhang,; Z. F. Shi,; Z. Z. Ma,; Y. Li,; S. Li,; D. Wu,; T. T. Xu,; X. J. Li,; C. X. Shan,; G. T. Du, Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices. Nanoscale 2018, 10, 20131-20139.
[29]
P. Chen,; Y. F. Liu,; Z. J. Zhang,; Y. Sun,; J. S. Hou,; G. Y. Zhao,; J. Zou,; Y. Z. Fang,; J. Y. Xu,; N. Dai, In situ growth of ultrasmall cesium lead bromine quantum dots in a mesoporous silica matrix and their application in flexible light-emitting diodes. Nanoscale 2019, 11, 16499-16507.
[30]
D. H. Park,; J. S. Han,; W. Kim,; H. S. Jang, Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dyes Pigm. 2018, 149, 246-252.
[31]
W. W. Chen,; T. C. Shi,; J. Du,; Z. G. Zang,; Z. Q. Yao,; M. Li,; K. Sun,; W. Hu,; Y. X. Leng,; X. S. Tang, Highly stable silica-wrapped Mn-doped CsPbCl3 quantum dots for bright white light-emitting devices. ACS Appl. Mater. Interfaces 2018, 10, 43978-43986.
[32]
J. Hai,; H. Li,; Y. Zhao,; F. J. Chen,; Y. Peng,; B. D. Wang, Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem. Commun. 2017, 53, 5400-5403.
[33]
H. C. Yoon,; S. Lee,; J. K. Song,; H. Yang,; Y. R. Do, Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix. ACS Appl. Mater. Interfaces 2018, 10, 11756-11767.
[34]
P. T. Liang,; P. Zhang,; A. Z. Pan,; K. Yan,; Y. S. Zhu,; M. Y. Yang,; L. He, Unusual stability and temperature-dependent properties of highly emissive CsPbBr3 perovskite nanocrystals obtained from in situ crystallization in poly(vinylidene difluoride). ACS Appl. Mater. Interfaces 2019, 11, 22786-22793.
[35]
Y. T. Cai,; Y. Li,; L. Wang,; R. J. Xie, A facile synthesis of water- resistant CsPbBr3 perovskite quantum dots loaded Poly(methyl methacrylate) composite microspheres based on in situ polymerization. Adv. Opt. Mater. 2019, 7, 1901075.
[36]
D. Q. Chen,; Y. Liu,; C. B. Yang,; J. S. Zhong,; S. Zhou,; J. K. Chen,; H. Huang, Promoting photoluminescence quantum yields of glass- stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping. Nanoscale 2019, 11, 17216-17221.
[37]
X. Q. Xiang,; H. Lin,; J. Xu,; Y. Cheng,; C. Y. Wang,; L. Q. Zhang,; Y. S. Wang, CsPb(Br,I)3 embedded glass: Fabrication, tunable luminescence, improved stability and wide-color gamut LCD application. Chem. Eng. J. 2019, 378, 122255.
[38]
Y. Ye,; W. C. Zhang,; Z. Y. Zhao,; J. Wang,; C. Liu,; Z. Deng,; X. J. Zhao,; J. J. Han, Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications. Adv. Opt. Mater. 2019, 7, 1801663.
[39]
D. Q. Chen,; S. Yuan,; J. K. Chen,; J. S. Zhong,; X. H. Xu, obust CsPbX3 (X = Cl, Br, and I) perovskite quantum dot embedded glasses: Nanocrystallization, improved stability and visible full-spectral tunable emissions. J. Mater. Chem. C 2018, 6, 12864-12870.
[40]
Z. J. Yong,; S. Q. Guo,; J. P. Ma,; J. Y. Zhang,; Z. Y. Li,; Y. M. Chen,; B. B. Zhang,; Y. Zhou,; J. Shu,; J. L. Gu, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 2018, 140, 9942-9951.
[41]
C. H. Bi,; S. X. Wang,; Q. Li,; S. V. Kershaw,; J. J. Tian,; A. L. Rogach, Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 2019, 10, 943-952.
[42]
Y. A. Liu,; G. C. Pan,; R. Wang,; H. Shao,; H. Wang,; W. Xu,; H. N. Cui,; H. W. Song, Considerably enhanced exciton emission of CsPbCl3 perovskite quantum dots by the introduction of potassium and lanthanide ions. Nanoscale 2018, 10, 14067-14072.
[43]
H. Shao,; X. Bai,; H. N. Cui,; G. C. Pan,; P. T. Jing,; S. N. Qu,; J. Y. Zhu,; Y. Zhai,; B. Dong,; H. W. Song, White light emission in Bi3+/Mn2+ ion co- doped CsPbCl3 perovskite nanocrystals. Nanoscale 2018, 10, 1023-1029.
[44]
J. Y. Zhu,; Z. F. Xie,; X. K. Sun,; S. Y. Zhang,; G. C. Pan,; Y. S. Zhu,; B. Dong,; X. Bai,; H. Z. Zhang,; H. W. Song, Highly efficient and stable inorganic perovskite quantum dots by embedding into a polymer matrix. ChemNanoMat 2019, 5, 346-351.
[45]
A. Z. Pan,; M. J. Jurow,; F. Qiu,; J. Yang,; B. Y. Ren,; J. J. Urban,; L. He,; Y. Liu, Nanorod suprastructures from a ternary graphene oxide-polymer-CsPbX3 perovskite nanocrystal composite that display high environmental stability. Nano Lett. 2017, 17, 6759-6765.
[46]
H. F. Zhao,; L. F. Wei,; P. Zeng,; M. Z. Liu, Formation of highly uniform thinly-wrapped CsPbX3@silicone nanocrystals via self- hydrolysis: Suppressed anion exchange and superior stability in polar solvents. J. Mater. Chem. C 2019, 7, 9813-9819.
[47]
U. T. D. Thuy,; P. T. Thuy,; N. Q. Liem,; L. Li,; P. Reiss, Comparative photoluminescence study of close-packed and colloidal InP/ZnS quantum dots. Appl. Phys. Lett. 2010, 96, 073102.
[48]
U. T. D. Thuy,; N. Q. Liem,; D. X. Thanh,; M. Protière,; P. Reiss, Optical transitions in polarized CdSe, CdSe/ZnSe, and CdSe/CdS/ ZnS quantum dots dispersed in various polar solvents. Appl. Phys. Lett. 2007, 91, 241908.
[49]
S. A. Crooker,; J. A. Hollingsworth,; S. Tretiak,; V. I. Klimov, Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards Engineered energy flows in artificial materials. Phys. Rev. Lett. 2002, 89, 186802.
[50]
Y. J. Xie,; Y. Yu,; J. Y. Gong,; C. Yang,; P. Zeng,; Y. R. Dong,; B. L. Yang,; R. Q. Liang,; Q. R. Ou,; S. Y. Zhang, Encapsulated room- temperature synthesized CsPbX3 perovskite quantum dots with high stability and wide color gamut for display. Opt. Mater. Express 2018, 8, 3494-3505.
[51]
L. Jiang,; Z. S. Fang,; H. R. Lou,; C. Lin,; Z. H. Chen,; J. Li,; H. P. He,; Z. Z. Ye, Achieving long carrier lifetime and high optical gain in all-inorganic CsPbBr3 perovskite films via top and bottom surface modification. Phys. Chem. Chem. Phys. 2019, 21, 21996-22001.
[52]
N. Ding,; D. L. Zhou,; X. K. Sun,; W. Xu,; H. W. Xu,; G. C. Pan,; D. Y. Li,; S. Zhang,; B. Dong,; H. W. Song, Highly stable and water- soluble monodisperse CsPbX3/SiO2 nanocomposites for white-LED and cells imaging. Nanotechnology 2018, 29, 345703.
[53]
C. de Weerd,; L. Gomez,; H. Zhang,; W. J. Buma,; G. Nedelcu,; M. V. Kovalenko,; T. Gregorkiewicz, Energy transfer between inorganic perovskite nanocrystals. J. Phys. Chem. C 2016, 120, 13310-13315.
[54]
C. R. Kagan,; C. B. Murray,; M. Nirmal,; M. G. Bawendi, Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 1996, 76, 1517-1520.
[55]
M. K. Choi,; J. Yang,; K. Kang,; D. C. Kim,; C. Choi,; C. Park,; S. J. Kim,; S. I Chae,; T. H. Kim,; J. H. Kim, et al. Wearable red-green- blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.
[56]
M. Chern,; T. T. Nguyen,; A. J. Mahler,; A. M. Dennis, Shell thickness effects on quantum dot brightness and energy transfer. Nanoscale 2017, 9, 16446-16458.
[57]
T. A. Klar,; T. Franzl,; A. L. Rogach,; J. Feldmann, Super-efficient exciton funneling in layer-by-layer semiconductor nanocrystal structures. Adv. Mater. 2005, 17, 769-773.
[58]
S. N. Raja,; Y. Bekenstein,; M. A. Koc,; S. Fischer,; D. D. Zhang,; L. W. Lin,; R. O. Ritchie,; P. D. Yang,; A. P. Alivisatos, Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523-35533.
[59]
R. An,; F. Y. Zhang,; X. S. Zou,; Y. Y. Tang,; M. L. Liang,; I. Oshchapovskyy,; Y. C. Liu,; A. Honarfar,; Y. Q. Zhong,; C. S. Li, et al. Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots. ACS Appl. Mater. Interfaces 2018, 10, 39222-39227.
[60]
J. Li,; L. Wang,; X. Yuan,; B. X. Bo,; H. B. Li,; J. L. Zhao,; X. Gao, Ultraviolet light induced degradation of luminescence in CsPbBr3 perovskite nanocrystals. Mater. Res. Bull. 2018, 102, 86-91.
[61]
Z. B. Shangguan,; X. Zheng,; J. Zhang,; W. S. Lin,; W. J. Guo,; C. Li,; T. Z. Wu,; Y. Lin,; Z. Chen, The stability of metal halide perovskite nanocrystals-A key issue for the application on quantum- dot-based micro light-emitting diodes display. Nanomaterials 2020, 10, 1375.
[62]
J. B. Huang,; S. Q. Tan,; P. D. Lund,; H. P. Zhou, Impact of H2O on organic-inorganic hybrid perovskite solar cells. Energy Environ. Sci. 2017, 10, 2284-2311.
File
12274_2020_3170_MOESM1_ESM.pdf (4.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2020
Revised: 16 September 2020
Accepted: 10 October 2020
Published: 15 November 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

N. L. acknowledges financial support from the Space Core Technology Development Program (No. 2017M1A3A3A02016782).

Return