[1]
N. Bauer,; Q. Q. Zhang,; J. J. Rech,; S. X. Dai,; Z. X. Peng,; H. Ade,; J. Y. Wang,; X. W. Zhan,; W. You, The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Res. 2019, 12, 2400-2405.
[2]
J. H. Hou,; O. Inganäs,; R. H. Friend,; F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119-28.
[3]
O. Inganäs, Organic photovoltaics over three decades. Adv. Mater. 2018, 30, 1800388.
[4]
Q. Burlingame,; X. H. Huang,; X. Liu,; C. Jeong,; C. Coburn,; S. R. Forrest, Intrinsically stable organic solar cells under high-intensity illumination. Nature 2019, 573, 394-397.
[5]
M. Graetzel,; R. A. J. Janssen,; D. B. Mitzi,; E. H. Sargent, Materials interface engineering for solution-processed photovoltaics. Nature 2012, 488, 304-12.
[6]
Y. F. Zheng,; J. Kong,; D. Huang,; W. Shi,; L. McMillon-Brown,; H. E. Katz,; J. S. Yu,; A. D. Taylor, Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale 2018, 10, 11342-11348.
[7]
P. Fan,; Y. F. Zheng,; J. S. Song,; J. S. Yu, N-type small molecule as an interfacial modification layer for efficient inverted polymer solar cells. Sol. Energy 2017, 158, 278-284.
[8]
W. C. Zhao,; D. P. Qian,; S. Q. Zhang,; S. S. Li,; O. Inganäs,; F. Gao,; J. H. Hou, Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734-4739.
[9]
P. Fan,; D. Y. Zhang,; Y. Wu,; J. S. Yu,; T. P. Russell, Polymer-modified ZnO nanoparticles as electron transport layer for polymer-based solar cells. Adv. Funct. Mater. 2020, 30, 2002932.
[10]
S. S. Chen,; Y. M. Wang,; L. Zhang,; J. B. Zhao,; Y. Z. Chen,; D. L. Zhu,; H. T. Yao,; G. Y. Zhang,; W. Ma,; R. H. Friend, et al. Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer. Adv. Mater. 2018, 30, 1804215.
[11]
A. Facchetti, Across the board: Antonio facchetti. ChemSusChem 2018, 11, 3829-3833.
[12]
R. N. Yu,; H. F. Yao,; L. Hong,; Y. P. Qin,; J. Zhu,; Y. Cui,; S. S. Li,; J. H. Hou, Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nat. Commun. 2018, 9, 4645.
[13]
Y. F. Zheng,; J. Huang; G. Wang,; J. Kong,; D. Huang,; M. M. Beromi,; N. Hazari,; A. D. Taylor,; J. S. Yu, A highly efficient polymer non-fullerene organic solar cell enhanced by introducing a small molecule as a crystallizing-agent. Mater. Today 2018, 21, 79-87.
[14]
T. Y. Kong,; H. Y. Wang,; W. J. Zhang,; P. Fan,; J. S. Yu, Simple alcohol solvent treatment enables efficient non-fullerene organic solar cells. J. Phys. D Appl. Phys. 2019, 52, 195104.
[15]
Y. F. Zheng,; G. Wang,; D. Huang,; J. Kong,; T. H. Goh,; W. Huang,; J. S. Yu,; A. D. Taylor, Binary solvent additives treatment boosts the efficiency of PTB7: PCBM polymer solar cells to over 9.5%. Sol. RRL 2018, 2, 1700144.
[16]
L. Q. Huang,; G. Wang,; W. H. Zhou,; B. Y. Fu,; X. F. Cheng,; L. F. Zhang,; Z. B. Yuan,; S. X. Xiong,; L. Zhang,; Y. P. Xie, et al. Vertical stratification engineering for organic bulk-heterojunction devices. ACS Nano 2018, 12, 4440-4452.
[17]
J. Huang,; H. Y. Wang,; K. R. Yan,; X. H. Zhang,; H. Z. Chen,; C. Z. Li,; J. S. Yu, Highly efficient organic solar cells consisting of double bulk heterojunction layers. Adv. Mater. 2017, 29, 1606729.
[18]
H. Lee,; C. Park,; D. H. Sin,; J. H. Park,; K. Cho, Recent advances in morphology optimization for organic photovoltaics. Adv. Mater. 2018, 30, 1800453.
[19]
L. F. Zhang,; N. Yi,; W. H. Zhou.; Z. K. N. Yu,; F. Liu,; Y. W. Chen, Miscibility tuning for optimizing phase separation and vertical distribution toward highly efficient organic solar cells. Adv. Sci. 2019, 6, 1900565.
[20]
J. L. Li,; J. K. Liu,; G. L. Tu, Vertically phase-separation based on amination-functionalized fullerene derivatives in inverted polymer solar cells. Sol. Energy 2019, 181, 405-413.
[21]
D. Zheng,; R. X. Peng,; G. Wang,; J. L. Logsdon,; B. H. Wang,; X. B. Hu,; Y. Chen,; V. P. Dravid,; M. R. Wasielewski,; J. S. Yu, et al. Simultaneous bottom-up interfacial and bulk defect passivation in highly efficient planar perovskite solar cells using nonconjugated small-molecule electrolytes. Adv. Mater. 2019, 31, 1903239.
[22]
D. Zhao,; J. Huang,; R. H. Qin,; G. J. Yang,; J. S. Yu, Efficient visible-near-infrared hybrid perovskite: PBS quantum dot photodetectors fabricated using an antisolvent additive solution process. Adv. Opt. Mater. 2018, 6, 1800979.
[23]
Z. H. Hu,; J. Wang,; Z. Wang,; W. Gao,; Q. S. An,; M. Zhang,; X. L. Ma,; J. X. Wang,; J. L. Miao,; C. L. Yang, et al. Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. Nano Energy 2019, 55, 424-432.
[24]
Y. C. Mao,; W. Li,; M. X. Chen,; X. L. Chen,; R. S. Gurney,; D. Liu,; T. Wang, Evolution of molecular aggregation in bar-coated non-fullerene organic solar cells. Mater. Chem. Front. 2019, 3, 1062-1070.
[25]
R. Datt,; ; A. Bagui,; A. Siddiqui,; R. Sharma,; V. Gupta,; S. Yoo,; S. Kumar,; S. P. Singh, Effectiveness of solvent vapor annealing over thermal annealing on the photovoltaic performance of non-fullerene acceptor based BHJ solar cells. Sci. Rep. 2019, 9, 8529.
[26]
Q. F. Wang,; W. H. Zhang,; Z. H. Zhang,; S. Liu,; J. W. Wu,; Y. J. Guan,; A. Y. Mei,; Y. G. Rong,; Y. Hu,; H. W. Han, Crystallization control of ternary-cation perovskite absorber in triple-mesoscopic layer for efficient solar cells. Adv. Energy Mater. 2020, 10, 1903092.
[27]
V. Lami,; A. Weu,; J. B. Zhang,; Y. S. Chen,; Z. P. Fei,; M. Heeney,; R. H. Friend, Y. Vaynzof, Visualizing the vertical energetic landscape in organic photovoltaics. Joule 2019, 3, 2513-2534.
[28]
M. A. Naylor,; M. R. Swift,; P. J. King, Air-driven brazil nut effect. Phys. Rev. E 2003, 68, 012301.
[29]
K. W. Hu,; Z. A. Xie,; P. Wu,; J. Sun,; L. Li,; C. Jia,; S. P. Zhang,; C. P. Liu,; L. Wang, Convecting particle diffusion in a binary particle system under vertical vibration. Soft Matter 2014, 10, 4348-4359.
[30]
Q. J. Liang,; J. Han,; C. P. Song,; X. H. Yu,; D. M. Smilgies,; K. Zhao,; J. G. Liu,; Y. C. Han, Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 2018, 6, 15610-15620.
[31]
W. C. Zhao,; S. Q. Zhang,; J. H. Hou, Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization. Sci. China Chem. 2016, 59, 1574-1582.
[32]
N. N. Zheng,; Z. F. Wang,; K. Zhang,; Y. Li,; F. Huang,; Y. Cao, High-performance inverted polymer solar cells without an electron extraction layer via a one-step coating of cathode buffer and active layer. J. Mater. Chem. A 2019, 7, 1429-1434.
[33]
C. P. Clement,; H. A. Pacheco-Martinez,; M. R. Swift,; P. J. King, The water-enhanced Brazil nut effect. EPL-Europhys. Lett. 2010, 91, 54001.
[34]
M. E. Möbius,; B. E. Lauderdale,; S. R. Nagel,; H. M. Jaeger, Size separation of granular particles. Nature 2001, 414, 270.
[35]
C. Maurel,; R. L. Ballouz,; D. C. Richardson,; P. Michel,; S. R. Schwartz, Numerical simulations of oscillation-driven regolith motion: Brazil-nut effect. Mon. Not. R. Astron. Soc. 2017, 464, 2866-2881.
[36]
R. Brito,; R. Soto, Competition of brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. Eur. Phys. J. Spec. Top. 2009, 179, 207-219.
[37]
D. Y. Zhang,; R. Hu,; J. Cheng,; Y. Q. Chang,; M. M. Huo,; J. S. Yu,; L. Li,; J. P. Zhang, Appropriate donor-acceptor phase separation structure for the enhancement of charge generation and transport in polymer solar cells. Polymers 2018, 10, 332.
[38]
B. Dudem,; J. W. Jung,; J. S. Yu, Improved light harvesting efficiency of semitransparent organic solar cells enabled by broadband/omnidirectional subwavelength antireflective architectures. J. Mater. Chem. A 2018, 6, 14769-14779.
[39]
G. J. Hedley,; A. Ruseckas, I. D. W. Samuel Light harvesting for organic photovoltaics. Chem. Rev. 2017, 117, 796-837.
[40]
Y. G. Tu,; G. N. Xu,; X. Y. Yang,; Y. F. Zhang,; Z. J. Li,; R. Su,; D. Y. Luo,; W. Q. Yang,; Y. Miao,; R. Cai, et al. Mixed-cation perovskite solar cells in space. Sci. China Phys. Mech. Astron. 2019, 62, 974221.
[41]
Y. L. Wang,; Q. L. Zhu,; H. B. Naveed,; H. Zhao,; K. Zhou,; W. Ma, Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells. Adv. Energy Mater. 2020, 10, 1903609.
[42]
X. B. Chen,; G. Y. Xu,; G. Zeng,; H. W. Gu,; H. Y. Chen,; H. T. Xu,; H. F. Yao,; Y. W. Li,; J. H. Hou,; Y. F. Li, Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 2020, 32, 1908478.
[43]
W. Gao,; Q. S. An,; M. H. Hao,; R. Sun,; J. Yuan,; F. J. Zhang,; W. Ma,; J. Min,; C. L. Yang, Thick-film organic solar cells achieving over 11% efficiency and nearly 70% fill factor at thickness over 400 nm. Adv. Funct. Mater. 2020, 30, 1908336.
[44]
H. Y. Wang,; J. Huang,; S. Xing,; J. S. Yu, Improved mobility and lifetime of carrier for highly efficient ternary polymer solar cells based on Tips-pentacene in PTB7: PC71BM. Org. Electron. 2016, 28, 11-19.
[45]
B. A. Nejand,; I. M. Hossain,; M. Jakoby,; S. Moghadamzadeh,; T. Abzieher,; S. Gharibzadeh,; J. A. Schwenzer,; P. Nazari,; F. Schackmar,; D. Hauschild, et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv. Energy Mater. 2020, 10, 1902583.
[46]
J. H. Gao,; W. Gao,; X. L. Ma,; Z. H. Hu,; C. Y. Xu,; X. L. Wang,; Q. S. An,; C. L. Yang,; X. L. Zhang,; F. J. Zhang, Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy Environ. Sci. 2020, 13, 958-967.
[47]
Y. P. Xie,; T. F. Li,; J. Guo,; P. Q. Bi,; X. N. Xue,; H. S. Ryu,; Y. H. Cai,; J. Min,; L. J. Huo,; X. T. Hao, et al. Ternary organic solar cells with small nonradiative recombination loss. ACS Energy Lett. 2019, 4, 1196-1203.
[48]
W. T. Yang,; L. Ye,; F. F. Yao,; C. H. Jin,; H. Ade,; H. Z. Chen, Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Res. 2019, 12, 777-783.
[49]
H. Xu,; L. Zhang,; Z. C. Ding,; J. L. Hu,; J. Liu,; Y. C. Liu, Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Res. 2018, 11, 4293-4301.
[50]
Q. S. An,; J. Wang,; W. Gao,; X. L. Ma,; Z. H. Hu,; J. H. Gao,; C. Y. Xu,; M. H. Hao,; X. L. Zhang,; C. L. Yang, et al. Alloy-like ternary polymer solar cells with over 17.2% efficiency. Sci. Bull. 2020, 65, 538-545.
[51]
J. Yuan,; Y. Q. Zhang,; L. Y. Zhou,; G. C. Zhang,; H. L. Yip,; T. K. Lau,; X. H. Lu,; C. Zhu,; H. J. Peng,; P. A. Johnson, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140-1151.
[52]
P. Q. Bi,; T. Xiao,; X. Y. Yang,; M. S. Niu,; Z. C. Wen,; K. N. Zhang,; W. Qin,; S. K. So,; G. H. Lu,; X. T. Hao, et al. Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells. Nano Energy 2018, 46, 81-90.
[53]
S. Xing,; H. Y. Wang,; Y. F. Zheng,; J. S. Yu, Förster resonance energy transfer and energy cascade with a favorable small molecule in ternary polymer solar cells. Sol. Energy 2016, 139, 221-227.
[54]
O. Douhéret,; L. Lutsen,; A. Swinnen,; M. Breselge,; K. Vandewal,; L. Goris,; J. Manca, Nanoscale electrical characterization of organic photovoltaic blends by conductive atomic force microscopy. Appl. Phys. Lett. 2006, 89, 032107.
[55]
D. Mikulik,; M. Ricci,; G. Tutuncuoglu,; F. Matteini,; J. Vukajlovic,; N. Vulic,; E. Alarcon-Llado,; A. F. I. Morral, Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells. Nano Energy 2017, 41, 566-572.
[56]
Z. Zheng,; Q. Hu,; S. Q. Zhang,; D. Y. Zhang,; J. Q. Wang,; S. K. Xie,; R. Wang,; Y. P. Qin,; W. N. Li,; L. Hong, et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv. Mater. 2018, 30, 1801801.
[57]
Y. H. Kim,; D. G. Kim,; R. D. Maduwu,; H. C. Jin,; D. K. Moon,; J. H. Kim, Organic electrolytes doped ZnO layer as the electron transport layer for bulk heterojunction polymer solar cells. Sol. RRL 2018, 2, 1800086.
[58]
X. Wang,; D. D. Zhang,; H. Jin,; B. Z. Poliquit,; B. Philippa,; R. C. R. Nagiri,; J. Subbiah,; D. J. Jones,; W. C. Ren,; J. H. Du, et al. Graphene-based transparent conducting electrodes for high efficiency flexible organic photovoltaics: Elucidating the source of the power losses. Sol. RRL 2019, 3, 1900042.
[59]
X. Y. Liu,; Y. J. Yan,; Y. Yao,; Z. Q. Liang, Ternary blend strategy for achieving high-efficiency organic solar cells with nonfullerene acceptors involved. Adv. Funct. Mater. 2018, 28, 1802004.
[60]
Y. F. Zheng,; R. Su,; Z. J. Xu,; D. Y. Luo,; H. Dong,; B. Jiao,; Z. X. Wu,; Q. H. Gong,; R. Zhu, Perovskite solar cell towards lower toxicity: A theoretical study of physical lead reduction strategy. Sci. Bull. 2019, 64, 1255-1261.