Journal Home > Volume 14 , Issue 5

Non-fullerene organic solar cell (NFOSC) has attracted tremendous attention due to their great potential for commercial applications. To improve its power conversion efficiency (PCE), generally, sequential solution deposition (SSD) methods have been employed to construct the graded vertical phase separation (VPS) of the bulk-heterojunction (BHJ) active layer for efficient exciton separation and charge transition. However, a variety of orthogonal solvents used in the SSD may lead to the unpredicted change in the BHJ morphology and introduce additional defects inside the BHJ bulk thus complicate the fabrication process. Here, a simple oscillating stratification preprocessing (OSP) is developed to facilitate the formation of graded VPS among the BHJ layer. As a result, a significant improvement is obtained in PCE from 10.96% to 12.03%, which is the highest value reported among PBDB-T: ITIC based NFOSC.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Control of vertical phase separation in high performance non-fullerene organic solar cell by introducing oscillating stratification preprocessing

Show Author's information Dayong Zhang1Pu Fan1Jinyu Shi1Yifan Zheng2( )Jian Zhong1( )Junsheng Yu1( )
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

Abstract

Non-fullerene organic solar cell (NFOSC) has attracted tremendous attention due to their great potential for commercial applications. To improve its power conversion efficiency (PCE), generally, sequential solution deposition (SSD) methods have been employed to construct the graded vertical phase separation (VPS) of the bulk-heterojunction (BHJ) active layer for efficient exciton separation and charge transition. However, a variety of orthogonal solvents used in the SSD may lead to the unpredicted change in the BHJ morphology and introduce additional defects inside the BHJ bulk thus complicate the fabrication process. Here, a simple oscillating stratification preprocessing (OSP) is developed to facilitate the formation of graded VPS among the BHJ layer. As a result, a significant improvement is obtained in PCE from 10.96% to 12.03%, which is the highest value reported among PBDB-T: ITIC based NFOSC.

Keywords: high performance, oscillating stratification preprocessing, graded vertical phase separation, non-fullerene organic solar cells, sequential solution deposition

References(60)

[1]
N. Bauer,; Q. Q. Zhang,; J. J. Rech,; S. X. Dai,; Z. X. Peng,; H. Ade,; J. Y. Wang,; X. W. Zhan,; W. You, The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Res. 2019, 12, 2400-2405.
[2]
J. H. Hou,; O. Inganäs,; R. H. Friend,; F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119-28.
[3]
O. Inganäs, Organic photovoltaics over three decades. Adv. Mater. 2018, 30, 1800388.
[4]
Q. Burlingame,; X. H. Huang,; X. Liu,; C. Jeong,; C. Coburn,; S. R. Forrest, Intrinsically stable organic solar cells under high-intensity illumination. Nature 2019, 573, 394-397.
[5]
M. Graetzel,; R. A. J. Janssen,; D. B. Mitzi,; E. H. Sargent, Materials interface engineering for solution-processed photovoltaics. Nature 2012, 488, 304-12.
[6]
Y. F. Zheng,; J. Kong,; D. Huang,; W. Shi,; L. McMillon-Brown,; H. E. Katz,; J. S. Yu,; A. D. Taylor, Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale 2018, 10, 11342-11348.
[7]
P. Fan,; Y. F. Zheng,; J. S. Song,; J. S. Yu, N-type small molecule as an interfacial modification layer for efficient inverted polymer solar cells. Sol. Energy 2017, 158, 278-284.
[8]
W. C. Zhao,; D. P. Qian,; S. Q. Zhang,; S. S. Li,; O. Inganäs,; F. Gao,; J. H. Hou, Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734-4739.
[9]
P. Fan,; D. Y. Zhang,; Y. Wu,; J. S. Yu,; T. P. Russell, Polymer-modified ZnO nanoparticles as electron transport layer for polymer-based solar cells. Adv. Funct. Mater. 2020, 30, 2002932.
[10]
S. S. Chen,; Y. M. Wang,; L. Zhang,; J. B. Zhao,; Y. Z. Chen,; D. L. Zhu,; H. T. Yao,; G. Y. Zhang,; W. Ma,; R. H. Friend, et al. Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer. Adv. Mater. 2018, 30, 1804215.
[11]
A. Facchetti, Across the board: Antonio facchetti. ChemSusChem 2018, 11, 3829-3833.
[12]
R. N. Yu,; H. F. Yao,; L. Hong,; Y. P. Qin,; J. Zhu,; Y. Cui,; S. S. Li,; J. H. Hou, Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nat. Commun. 2018, 9, 4645.
[13]
Y. F. Zheng,; J. Huang; G. Wang,; J. Kong,; D. Huang,; M. M. Beromi,; N. Hazari,; A. D. Taylor,; J. S. Yu, A highly efficient polymer non-fullerene organic solar cell enhanced by introducing a small molecule as a crystallizing-agent. Mater. Today 2018, 21, 79-87.
[14]
T. Y. Kong,; H. Y. Wang,; W. J. Zhang,; P. Fan,; J. S. Yu, Simple alcohol solvent treatment enables efficient non-fullerene organic solar cells. J. Phys. D Appl. Phys. 2019, 52, 195104.
[15]
Y. F. Zheng,; G. Wang,; D. Huang,; J. Kong,; T. H. Goh,; W. Huang,; J. S. Yu,; A. D. Taylor, Binary solvent additives treatment boosts the efficiency of PTB7: PCBM polymer solar cells to over 9.5%. Sol. RRL 2018, 2, 1700144.
[16]
L. Q. Huang,; G. Wang,; W. H. Zhou,; B. Y. Fu,; X. F. Cheng,; L. F. Zhang,; Z. B. Yuan,; S. X. Xiong,; L. Zhang,; Y. P. Xie, et al. Vertical stratification engineering for organic bulk-heterojunction devices. ACS Nano 2018, 12, 4440-4452.
[17]
J. Huang,; H. Y. Wang,; K. R. Yan,; X. H. Zhang,; H. Z. Chen,; C. Z. Li,; J. S. Yu, Highly efficient organic solar cells consisting of double bulk heterojunction layers. Adv. Mater. 2017, 29, 1606729.
[18]
H. Lee,; C. Park,; D. H. Sin,; J. H. Park,; K. Cho, Recent advances in morphology optimization for organic photovoltaics. Adv. Mater. 2018, 30, 1800453.
[19]
L. F. Zhang,; N. Yi,; W. H. Zhou.; Z. K. N. Yu,; F. Liu,; Y. W. Chen, Miscibility tuning for optimizing phase separation and vertical distribution toward highly efficient organic solar cells. Adv. Sci. 2019, 6, 1900565.
[20]
J. L. Li,; J. K. Liu,; G. L. Tu, Vertically phase-separation based on amination-functionalized fullerene derivatives in inverted polymer solar cells. Sol. Energy 2019, 181, 405-413.
[21]
D. Zheng,; R. X. Peng,; G. Wang,; J. L. Logsdon,; B. H. Wang,; X. B. Hu,; Y. Chen,; V. P. Dravid,; M. R. Wasielewski,; J. S. Yu, et al. Simultaneous bottom-up interfacial and bulk defect passivation in highly efficient planar perovskite solar cells using nonconjugated small-molecule electrolytes. Adv. Mater. 2019, 31, 1903239.
[22]
D. Zhao,; J. Huang,; R. H. Qin,; G. J. Yang,; J. S. Yu, Efficient visible-near-infrared hybrid perovskite: PBS quantum dot photodetectors fabricated using an antisolvent additive solution process. Adv. Opt. Mater. 2018, 6, 1800979.
[23]
Z. H. Hu,; J. Wang,; Z. Wang,; W. Gao,; Q. S. An,; M. Zhang,; X. L. Ma,; J. X. Wang,; J. L. Miao,; C. L. Yang, et al. Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. Nano Energy 2019, 55, 424-432.
[24]
Y. C. Mao,; W. Li,; M. X. Chen,; X. L. Chen,; R. S. Gurney,; D. Liu,; T. Wang, Evolution of molecular aggregation in bar-coated non-fullerene organic solar cells. Mater. Chem. Front. 2019, 3, 1062-1070.
[25]
R. Datt,; ; A. Bagui,; A. Siddiqui,; R. Sharma,; V. Gupta,; S. Yoo,; S. Kumar,; S. P. Singh, Effectiveness of solvent vapor annealing over thermal annealing on the photovoltaic performance of non-fullerene acceptor based BHJ solar cells. Sci. Rep. 2019, 9, 8529.
[26]
Q. F. Wang,; W. H. Zhang,; Z. H. Zhang,; S. Liu,; J. W. Wu,; Y. J. Guan,; A. Y. Mei,; Y. G. Rong,; Y. Hu,; H. W. Han, Crystallization control of ternary-cation perovskite absorber in triple-mesoscopic layer for efficient solar cells. Adv. Energy Mater. 2020, 10, 1903092.
[27]
V. Lami,; A. Weu,; J. B. Zhang,; Y. S. Chen,; Z. P. Fei,; M. Heeney,; R. H. Friend, Y. Vaynzof, Visualizing the vertical energetic landscape in organic photovoltaics. Joule 2019, 3, 2513-2534.
[28]
M. A. Naylor,; M. R. Swift,; P. J. King, Air-driven brazil nut effect. Phys. Rev. E 2003, 68, 012301.
[29]
K. W. Hu,; Z. A. Xie,; P. Wu,; J. Sun,; L. Li,; C. Jia,; S. P. Zhang,; C. P. Liu,; L. Wang, Convecting particle diffusion in a binary particle system under vertical vibration. Soft Matter 2014, 10, 4348-4359.
[30]
Q. J. Liang,; J. Han,; C. P. Song,; X. H. Yu,; D. M. Smilgies,; K. Zhao,; J. G. Liu,; Y. C. Han, Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 2018, 6, 15610-15620.
[31]
W. C. Zhao,; S. Q. Zhang,; J. H. Hou, Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization. Sci. China Chem. 2016, 59, 1574-1582.
[32]
N. N. Zheng,; Z. F. Wang,; K. Zhang,; Y. Li,; F. Huang,; Y. Cao, High-performance inverted polymer solar cells without an electron extraction layer via a one-step coating of cathode buffer and active layer. J. Mater. Chem. A 2019, 7, 1429-1434.
[33]
C. P. Clement,; H. A. Pacheco-Martinez,; M. R. Swift,; P. J. King, The water-enhanced Brazil nut effect. EPL-Europhys. Lett. 2010, 91, 54001.
[34]
M. E. Möbius,; B. E. Lauderdale,; S. R. Nagel,; H. M. Jaeger, Size separation of granular particles. Nature 2001, 414, 270.
[35]
C. Maurel,; R. L. Ballouz,; D. C. Richardson,; P. Michel,; S. R. Schwartz, Numerical simulations of oscillation-driven regolith motion: Brazil-nut effect. Mon. Not. R. Astron. Soc. 2017, 464, 2866-2881.
[36]
R. Brito,; R. Soto, Competition of brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. Eur. Phys. J. Spec. Top. 2009, 179, 207-219.
[37]
D. Y. Zhang,; R. Hu,; J. Cheng,; Y. Q. Chang,; M. M. Huo,; J. S. Yu,; L. Li,; J. P. Zhang, Appropriate donor-acceptor phase separation structure for the enhancement of charge generation and transport in polymer solar cells. Polymers 2018, 10, 332.
[38]
B. Dudem,; J. W. Jung,; J. S. Yu, Improved light harvesting efficiency of semitransparent organic solar cells enabled by broadband/omnidirectional subwavelength antireflective architectures. J. Mater. Chem. A 2018, 6, 14769-14779.
[39]
G. J. Hedley,; A. Ruseckas, I. D. W. Samuel Light harvesting for organic photovoltaics. Chem. Rev. 2017, 117, 796-837.
[40]
Y. G. Tu,; G. N. Xu,; X. Y. Yang,; Y. F. Zhang,; Z. J. Li,; R. Su,; D. Y. Luo,; W. Q. Yang,; Y. Miao,; R. Cai, et al. Mixed-cation perovskite solar cells in space. Sci. China Phys. Mech. Astron. 2019, 62, 974221.
[41]
Y. L. Wang,; Q. L. Zhu,; H. B. Naveed,; H. Zhao,; K. Zhou,; W. Ma, Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells. Adv. Energy Mater. 2020, 10, 1903609.
[42]
X. B. Chen,; G. Y. Xu,; G. Zeng,; H. W. Gu,; H. Y. Chen,; H. T. Xu,; H. F. Yao,; Y. W. Li,; J. H. Hou,; Y. F. Li, Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 2020, 32, 1908478.
[43]
W. Gao,; Q. S. An,; M. H. Hao,; R. Sun,; J. Yuan,; F. J. Zhang,; W. Ma,; J. Min,; C. L. Yang, Thick-film organic solar cells achieving over 11% efficiency and nearly 70% fill factor at thickness over 400 nm. Adv. Funct. Mater. 2020, 30, 1908336.
[44]
H. Y. Wang,; J. Huang,; S. Xing,; J. S. Yu, Improved mobility and lifetime of carrier for highly efficient ternary polymer solar cells based on Tips-pentacene in PTB7: PC71BM. Org. Electron. 2016, 28, 11-19.
[45]
B. A. Nejand,; I. M. Hossain,; M. Jakoby,; S. Moghadamzadeh,; T. Abzieher,; S. Gharibzadeh,; J. A. Schwenzer,; P. Nazari,; F. Schackmar,; D. Hauschild, et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv. Energy Mater. 2020, 10, 1902583.
[46]
J. H. Gao,; W. Gao,; X. L. Ma,; Z. H. Hu,; C. Y. Xu,; X. L. Wang,; Q. S. An,; C. L. Yang,; X. L. Zhang,; F. J. Zhang, Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy Environ. Sci. 2020, 13, 958-967.
[47]
Y. P. Xie,; T. F. Li,; J. Guo,; P. Q. Bi,; X. N. Xue,; H. S. Ryu,; Y. H. Cai,; J. Min,; L. J. Huo,; X. T. Hao, et al. Ternary organic solar cells with small nonradiative recombination loss. ACS Energy Lett. 2019, 4, 1196-1203.
[48]
W. T. Yang,; L. Ye,; F. F. Yao,; C. H. Jin,; H. Ade,; H. Z. Chen, Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Res. 2019, 12, 777-783.
[49]
H. Xu,; L. Zhang,; Z. C. Ding,; J. L. Hu,; J. Liu,; Y. C. Liu, Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Res. 2018, 11, 4293-4301.
[50]
Q. S. An,; J. Wang,; W. Gao,; X. L. Ma,; Z. H. Hu,; J. H. Gao,; C. Y. Xu,; M. H. Hao,; X. L. Zhang,; C. L. Yang, et al. Alloy-like ternary polymer solar cells with over 17.2% efficiency. Sci. Bull. 2020, 65, 538-545.
[51]
J. Yuan,; Y. Q. Zhang,; L. Y. Zhou,; G. C. Zhang,; H. L. Yip,; T. K. Lau,; X. H. Lu,; C. Zhu,; H. J. Peng,; P. A. Johnson, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140-1151.
[52]
P. Q. Bi,; T. Xiao,; X. Y. Yang,; M. S. Niu,; Z. C. Wen,; K. N. Zhang,; W. Qin,; S. K. So,; G. H. Lu,; X. T. Hao, et al. Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells. Nano Energy 2018, 46, 81-90.
[53]
S. Xing,; H. Y. Wang,; Y. F. Zheng,; J. S. Yu, Förster resonance energy transfer and energy cascade with a favorable small molecule in ternary polymer solar cells. Sol. Energy 2016, 139, 221-227.
[54]
O. Douhéret,; L. Lutsen,; A. Swinnen,; M. Breselge,; K. Vandewal,; L. Goris,; J. Manca, Nanoscale electrical characterization of organic photovoltaic blends by conductive atomic force microscopy. Appl. Phys. Lett. 2006, 89, 032107.
[55]
D. Mikulik,; M. Ricci,; G. Tutuncuoglu,; F. Matteini,; J. Vukajlovic,; N. Vulic,; E. Alarcon-Llado,; A. F. I. Morral, Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells. Nano Energy 2017, 41, 566-572.
[56]
Z. Zheng,; Q. Hu,; S. Q. Zhang,; D. Y. Zhang,; J. Q. Wang,; S. K. Xie,; R. Wang,; Y. P. Qin,; W. N. Li,; L. Hong, et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv. Mater. 2018, 30, 1801801.
[57]
Y. H. Kim,; D. G. Kim,; R. D. Maduwu,; H. C. Jin,; D. K. Moon,; J. H. Kim, Organic electrolytes doped ZnO layer as the electron transport layer for bulk heterojunction polymer solar cells. Sol. RRL 2018, 2, 1800086.
[58]
X. Wang,; D. D. Zhang,; H. Jin,; B. Z. Poliquit,; B. Philippa,; R. C. R. Nagiri,; J. Subbiah,; D. J. Jones,; W. C. Ren,; J. H. Du, et al. Graphene-based transparent conducting electrodes for high efficiency flexible organic photovoltaics: Elucidating the source of the power losses. Sol. RRL 2019, 3, 1900042.
[59]
X. Y. Liu,; Y. J. Yan,; Y. Yao,; Z. Q. Liang, Ternary blend strategy for achieving high-efficiency organic solar cells with nonfullerene acceptors involved. Adv. Funct. Mater. 2018, 28, 1802004.
[60]
Y. F. Zheng,; R. Su,; Z. J. Xu,; D. Y. Luo,; H. Dong,; B. Jiao,; Z. X. Wu,; Q. H. Gong,; R. Zhu, Perovskite solar cell towards lower toxicity: A theoretical study of physical lead reduction strategy. Sci. Bull. 2019, 64, 1255-1261.
File
12274_2020_3169_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 August 2020
Revised: 16 September 2020
Accepted: 30 September 2020
Published: 05 January 2021
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 61421002, 61675041, and 51703019), and Sichuan Science and Technology Program (Nos. 2019YFG0121, 2019YJ0178, 2020YFG0279, and 2020YFG0281), and the China Scholarship Council (No. 201806070051). This work is also sponsored by the Sichuan Province Key Laboratory of Display Science and Technology.

Return