Journal Home > Volume 14 , Issue 4

Novel physical properties emerge when the thickness of charge density wave (CDW) materials is reduced to the atomic level, owing to the significant modification of the electronic band structure and correlation effects. Here, we investigate the layer-dependent CDW phase transition and evolution of the nonequilibrium state of 1T-TaS2 nanoflakes using pump-probe spectroscopy. Both the low-energy single-particle and collective excitation relaxations exhibit sharp changes at ~ 210 K, indicating a phase transition from commensurate CDW to nearly commensurate CDW state. The single particle process reveals that the phase transition stiffness (PTS) is thickness-dependent. Moreover, a small PTS is observed in thin nanoflakes, which is attributed to the reduced thickness that increases the fluctuation and inhibits the nucleation and growth of discommensurations. In addition, the phase mode vanishes when the discommensuration network appears. Our results suggest that the carrier dynamics could be an efficient operational approach to measuring the quantum phase transition in correlated materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Layer-dependent charge density wave phase transition stiffness in 1T-TaS2 nanoflakes evidenced by ultrafast carrier dynamics

Show Author's information Rui Wang1( )Junbo Zhou1,4Xinsheng Wang1Liming Xie1,4( )Jimin Zhao2,3,4( )Xiaohui Qiu1,4( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Novel physical properties emerge when the thickness of charge density wave (CDW) materials is reduced to the atomic level, owing to the significant modification of the electronic band structure and correlation effects. Here, we investigate the layer-dependent CDW phase transition and evolution of the nonequilibrium state of 1T-TaS2 nanoflakes using pump-probe spectroscopy. Both the low-energy single-particle and collective excitation relaxations exhibit sharp changes at ~ 210 K, indicating a phase transition from commensurate CDW to nearly commensurate CDW state. The single particle process reveals that the phase transition stiffness (PTS) is thickness-dependent. Moreover, a small PTS is observed in thin nanoflakes, which is attributed to the reduced thickness that increases the fluctuation and inhibits the nucleation and growth of discommensurations. In addition, the phase mode vanishes when the discommensuration network appears. Our results suggest that the carrier dynamics could be an efficient operational approach to measuring the quantum phase transition in correlated materials.

Keywords: charge density wave 1T-TaS2, layer-dependent, phase transition stiffness, ultrafast carrier dynamics

References(34)

[1]
A. W. Tsen,; R. Hovden,; D. Wang,; Y. D. Kim,; J. Okamoto,; K. A. Spoth,; Y. Liu,; W. J. Lu,; Y. P. Sun,; J. C. Hone, et al. Structure and control of charge density waves in two-dimensional 1T-TaS2. Proc. Natl. Acad. Sci. USA 2015, 112, 15054-15059.
[2]
M. Yoshida,; R. Suzuki,; Y. J. Zhang,; M. Nakano,; Y. Iwasa, Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 2015, 1, e1500606.
[3]
G. X. Liu,; B. Debnath,; T. R. Pope,; T. T. Salguero,; R. K. Lake,; A. A. Balandin, A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature. Nat. Nanotechnol. 2016, 11, 845-850.
[4]
Y. J. Yu,; F. Y. Yang,; X. F. Lu,; Y. J. Yan,; Y. H. Cho,; L. G. Ma,; X. H. Niu,; S. Kim,; Y. W. Son,; D. L. Feng, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270-276.
[5]
M. J. Hollander,; Y. Liu,; W. J. Lu,; L. J. Li,; Y. P. Sun,; J. A. Robinson,; S. Datta, Electrically driven reversible insulator-metal phase transition in 1T-TaS2. Nano Lett. 2015, 15, 1861-1866.
[6]
W. Wen,; Y. M. Zhu,; C. H. Dang,; W. Chen,; L. M. Xie, Raman spectroscopic and dynamic electrical investigation of multi-state charge-wave-density phase transitions in 1T-TaS2. Nano Lett. 2019, 19, 1805-1813.
[7]
C. Zhu,; Y. Chen,; F. C. Liu,; S. J. Zheng,; X. B. Li,; A. Chaturvedi,; J. D. Zhou,; Q. D. Fu,; Y. M. He,; Q. S. Zeng, et al. Light-tunable 1T-TaS2 charge-density-wave oscillators. ACS Nano 2018, 12, 11203-11210.
[8]
W. Fu,; Y. Chen,; J. H. Lin,; X. W. Wang,; Q. S. Zeng,; J. D. Zhou,; L. Zheng,; H. Wang,; Y. M. He,; H. Y. He, et al. Controlled synthesis of atomically thin 1T-TaS2 for tunable charge density wave phase transitions. Chem. Mater. 2016, 28, 7613-7618.
[9]
T. Hirata,; F. S. Ohuchi, Temperature dependence of the Raman spectra of 1T-TaS2. Solid State Commun. 2001, 117, 361-364.
[10]
X. S. Wang,; H. N. Liu,; J. X. Wu,; J. H. Lin,; W. He,; H. Wang,; X. H. Shi,; K. Suenaga,; L. M. Xie, Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity. Adv. Mater. 2018, 30, 1800074.
[11]
L. Wang,; J. Wang,; C. L. Liu,; H. Xu,; A. Li,; D. C. Wei,; Y. Q. Liu,; G. Chen,; X. S. Chen,; W. Liu, Distinctive performance of terahertz photodetection driven by charge-density-wave order in CVD-grown tantalum diselenide. Adv. Funct. Mater. 2019, 29, 1905057.
[12]
D. Wu,; Y. C. Ma,; Y. Y. Niu,; Q. M. Liu,; T. Dong,; S. J. Zhang,; J. S. Niu,; H. B. Zhou,; J. Wei,; Y. X. Wang, et al. Ultrabroadband photosensitivity from visible to terahertz at room temperature. Sci. Adv. 2018, 4, eaao3057.
[13]
J. Demsar,; L. Forró,; H. Berger,; D. Mihailovic, Femtosecond snapshots of gap-forming charge-density-wave correlations in quasi- two-dimensional dichalcogenides 1T-TaS2 and 2H-TaSe2. Phys. Rev. B 2002, 66, 041101(R).
[14]
Y. Toda,; K. Tateishi,; S. Tanda, Anomalous coherent phonon oscillations in the commensurate phase of the quasi-two-dimensional 1T-TaS2 compound. Phys. Rev. B 2004, 70, 033106.
[15]
J. Demsar,; K. Biljaković,; D. Mihailovic, Single particle and collective excitations in the one-dimensional charge density wave solid K0.3MoO3 probed in real time by femtosecond spectroscopy. Phys. Rev. Lett. 1999, 83, 800-803.
[16]
K. Tanimura, Photoinduced discommensuration of the commensurate charge-density wave phase 1T-TaS2. Phys. Rev. B 2018, 97, 245115.
[17]
A. Rothwarf,; B. N. Taylor, Measurement of recombination lifetimes in superconductors. Phys. Rev. Lett. 1967, 19, 27-30.
[18]
V. V. Kabanov,; J. Demsar,; B. Podobnik,; D. Mihailovic, Quasiparticle relaxation dynamics in superconductors with different gap structures: Theory and experiments on YBa2Cu3O7-δ. Phys. Rev. B 1999, 59, 1497-1506.
[19]
R. V. Yusupov,; T. Mertelj,; J. H. Chu,; I. R. Fisher,; D. Mihailovic, Single-particle and collective mode couplings associated with 1- and 2-directional electronic ordering in metallic RTe3 (R = Ho,Dy,Tb). Phys. Rev. Lett. 2008, 101, 246402.
[20]
Y. C. Tian,; W. H. Zhang,; F. S. Li,; Y. L. Wu,; Q. Wu,; F. Sun,; G. Y. Zhou,; L. L. Wang,; X. C. Ma,; Q. K. Xue, et al. Ultrafast dynamics evidence of high temperature superconductivity in single unit cell FeSe on SrTiO3. Phys. Rev. Lett. 2016, 116, 107001.
[21]
D. E. Moncton,; F. J. DiSalvo,; J. D. Axe,; L. J. Sham,; B. R. Patton, Charge-density wave stacking order in 1T-Ta1−xZrxSe2: Interlayer interactions and impurity (Zr) effects. Phys. Rev. B 1976, 14, 3432-3437.
[22]
M. Yoshida,; Y. J. Zhang,; J. T. Ye,; R. Suzuki,; Y. Imai,; S. Kimura,; A. Fujiwara,; Y. Iwasa, Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 2014, 4, 7302.
[23]
H. J. Zeiger,; J. Vidal,; T. K. Cheng,; E. P. Ippen,; G. Dresselhaus,; M. S. Dresselhaus, Theory for displacive excitation of coherent phonons. Phys. Rev. B 1992, 45, 768-778.
[24]
I. Lutsyk,; M. Rogala,; P. Dabrowski,; P. Krukowski,; P. J. Kowalczyk,; A. Busiakiewicz,; D. A. Kowalczyk,; E. Lacinska,; J. Binder,; N. Olszowska, et al. Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T-TaS2 by angle- resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory. Phys. Rev. B 2018, 98, 195425.
[25]
S. Hellmann,; M. Beye,; C. Sohrt,; T. Rohwer,; F. Sorgenfrei,; H. Redlin,; M. Kalläne,; M. Marczynski-Bühlow,; F. Hennies,; M. Bauer, et al. Ultrafast melting of a charge-density wave in the mott insulator 1T-TaS2. Phys. Rev. Lett. 2010, 105, 187401.
[26]
H. C. Lin,; W. T. Huang,; K. Zhao,; S. Qiao,; Z. Liu,; J. Wu,; X. Chen,; S. H. Ji, Scanning tunneling spectroscopic study of monolayer 1T-TaS2 and 1T-TaSe2. Nano Res. 2020, 13, 133-137.
[27]
B. Dardel,; M. Grioni,; D. Malterre,; P. Weibel,; Y. Baer,; F. Lévy, Temperature-dependent pseudogap and electron localization in 1T-TaS2. Phys. Rev. B 1992, 45, 1462-1465.
[28]
B. Dardel,; M. Grioni,; D. Malterre,; P. Weibel,; Y. Baer,; F. Lévy, Spectroscopic signatures of phase transitions in a charge-density- wave system: 1T-TaS2. Phys. Rev. B 1992, 46, 7407-7412.
[29]
M. Eichberger,; H. Schäfer,; M. Krumova,; M. Beyer,; J. Demsar,; H. Berger,; G. Moriena,; G. Sciaini,; R. J. D. Miller, Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 2010, 468, 799-802.
[30]
S. Kolekar,; M. Bonilla,; Y. J. Ma,; H. C. Diaz,; M. Batzill, Layer- and substrate-dependent charge density wave criticality in 1T-TiSe2. 2D Mater. 2018, 5, 015006.
[31]
P. M. Coelho,; K. Lasek,; K. N. Cong,; J. F. Li,; W. Niu,; W. Q. Liu,; I. I. Oleynik,; M. Batzill, Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987-4993.
[32]
R. Y. Chen,; B. F. Hu,; T. Dong,; N. L. Wang, Revealing multiple charge-density-wave orders in TbTe3 by optical conductivity and ultrafast pump-probe experiments. Phys. Rev. B 2014, 89, 075114.
[33]
M. Ausloos,; A. A. Varlamov, Fluctuation Phenomena in High Temperature Superconductors; Springer: Dordrecht, 1997.
[34]
B. Giambattista,; C. G. Slough,; W. W. McNairy,; R. V. Coleman, Scanning tunneling microscopy of atoms and charge-density waves in 1T-TaS2, 1T-TaSe2, and 1T-VSe2. Phys. Rev. B 1990, 41, 10082-10103.
File
12274_2020_3166_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 September 2020
Revised: 30 September 2020
Accepted: 08 October 2020
Published: 30 October 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

We thank Prof. Yong Wang (Nankai University) for the valued discussions. We acknowledge financial support from the National Key Research and Development Program of China (Nos. 2017YFA0205000, 2017YFA0303600, and 2016YFA0200701), the National Natural Science Foundation of China (Nos. 21425310, 21790353, 21721002, 21822502, and 21673058), Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB36000000 and XDB30000000) and the Key Research Program of Frontier Sciences of CAS (No. QYZDB-SSW-SYS031).

Return