Journal Home > Volume 14 , Issue 4

One dimensional (1D) nanostructures attract considerable attention, enabling a broad application owing to their unique properties. However, the precise mechanism of 1D morphology attainment remains a matter of debate. In this study, ultrafast picosecond (ps) laser-induced treatment on upconversion nanoparticles (UCNPs) is offered as a tool for 1D-nanostructures formation. Fragmentation, reshaping through recrystallization process and bioadaptation of initially hydrophobic (β-Na1.5Y1.5F6: Yb3+, Tm3+/β-Na1.5Y1.5F6) core/shell nanoparticles by means of one-step laser treatment in water are demonstrated. "True" 1D nanostructures through "Medusa" -like structures can be obtained, maintaining anti-Stokes luminescence functionalities. A matter of the one-dimensional UCNPs based on direction of energy migration processes is debated. The proposed laser treatment approach is suitable for fast UCNP surface modification and nano-to-nano transformation, that open unique opportunities to expand UCNP applications in industry and biomedicine.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Pulsed laser reshaping and fragmentation of upconversion nanoparticles - from hexagonal prisms to 1D nanorods through "Medusa" -like structures

Show Author's information Laszlo Sajti1,§Denis N. Karimov2,§Vasilina V. Rocheva2Nataliya A. Arkharova2Kirill V. Khaydukov2Oleg I. Lebedev3Alexey E. Voloshin2Alla N. Generalova2,4Boris N. Chichkov5Evgeny V. Khaydukov2,6( )
AIT Austrian Institute of Technology GmbH, Wiener Neustadt, 2700, Austria
Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, 119333, Russia
Laboratoire CRISMAT, UMR6508, CNRS-ENSIACEN, Universite Caen, Caen, 14050, France
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, 30167, Germany
Center of Biomedical Engineering, Institute of Molecular Medicine Sechenov First Moscow State Medical University, Moscow, 119991, Russia

§ Laszlo Sajti and Denis N. Karimov contributed equally to this work.

Abstract

One dimensional (1D) nanostructures attract considerable attention, enabling a broad application owing to their unique properties. However, the precise mechanism of 1D morphology attainment remains a matter of debate. In this study, ultrafast picosecond (ps) laser-induced treatment on upconversion nanoparticles (UCNPs) is offered as a tool for 1D-nanostructures formation. Fragmentation, reshaping through recrystallization process and bioadaptation of initially hydrophobic (β-Na1.5Y1.5F6: Yb3+, Tm3+/β-Na1.5Y1.5F6) core/shell nanoparticles by means of one-step laser treatment in water are demonstrated. "True" 1D nanostructures through "Medusa" -like structures can be obtained, maintaining anti-Stokes luminescence functionalities. A matter of the one-dimensional UCNPs based on direction of energy migration processes is debated. The proposed laser treatment approach is suitable for fast UCNP surface modification and nano-to-nano transformation, that open unique opportunities to expand UCNP applications in industry and biomedicine.

Keywords: upconversion nanoparticles, fluoride crystals, upconversion nanorods, one-dimensional (1D) structures, laser-induced reshaping

References(52)

[1]
R. R. Deng,; F. Qin,; R. F. Chen,; W. Huang,; M. H. Hong,; X. G. Liu, Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 2015, 10, 237-242.
[2]
A. N. Generalova,; B. N. Chichkov,; E. V. Khaydukov, Multicomponent nanocrystals with anti-stokes luminescence as contrast agents for modern imaging techniques. Adv. Colloid Interface Sci. 2017, 245, 1-19.
[3]
G. Y. Chen,; H. L. Qiu,; P. N. Prasad,; X. Y. Chen, Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161-5214.
[4]
H. Li,; M. L. Tan,; X. Wang,; F. Li,; Y. Q. Zhang,; L. L. Zhao,; C. H. Yang,; G. Y. Chen, Temporal multiplexed in vivo upconversion imaging. J. Am. Chem. Soc. 2020, 142, 2023-2030.
[5]
L. Cheng,; C. Wang,; Z. Liu, Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2013, 5, 23-37.
[6]
K. E. Mironova,; D. A. Khochenkov,; A. N. Generalova,; V. V. Rocheva,; N. V. Sholina,; A. V. Nechaev,; V. A. Semchishen,; S. M. Deyev,; A. V. Zvyagin,; E. V. Khaydukov, Ultraviolet phototoxicity of upconversion nanoparticles illuminated with near-infrared light. Nanoscale 2017, 9, 14921-14928.
[7]
X. J. Zhu,; W. Feng,; J. Chang,; Y. W. Tan,; J. C. Li,; M. Chen,; Y. Sun,; F. Y. Li, Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.
[8]
M. Kumar,; P. Zhang, Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles. Biosens. Bioelectron. 2010, 25, 2431-2435.
[9]
K. K. Green,; J. Wirth,; S. F. Lim, Nanoplasmonic upconverting nanoparticles as orientation sensors for single particle microscopy. Sci. Rep. 2017, 7, 762.
[10]
E. V. Khaydukov,; V. V. Rocheva,; K. E. Mironova,; A. N. Generalova,; A. V. Nechaev,; V. A. Semchishen,; V. Y. Panchenko, Biocompatible upconversion ink for hidden anticounterfeit labeling. Nanotechnol. Russ. 2015, 10, 904-909.
[11]
J. M. Meruga,; W. M. Cross,; P. Stanley May,; Q. Luu,; G. A. Crawford,; J. J. Kellar, Security printing of covert quick response codes using upconverting nanoparticle inks. Nanotechnology 2012, 23, 395201.
[12]
S. W. Hao,; Y. F. Shang,; D. Y. Li,; H. Ågren,; C. H. Yang,; G. Y. Chen, Enhancing dye-sensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles. Nanoscale 2017, 9, 6711-6715.
[13]
Y. F. Shang,; S. W. Hao,; C. H. Yang,; G. Y. Chen, Enhancing solar cell efficiency using photon upconversion materials. Nanomaterials 2015, 5, 1782-1809.
[14]
V. V. Rocheva,; A. V. Koroleva,; A. G. Savelyev,; K. V. Khaydukov,; A. N. Generalova,; A. V. Nechaev,; A. E. Guller,; V. A. Semchishen,; B. N. Chichkov,; E. V. Khaydukov, High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci. Rep. 2018, 8, 3663.
[15]
Y. W. Chen,; J. M. Zhang,; X. Liu,; S. Wang,; J. Tao,; Y. L. Huang,; W. B. Wu,; Y. Li,; K. Zhou,; X. W. Wei, et al. Noninvasive in vivo 3D bioprinting. Sci. Adv. 2020, 6, eaba7406.
[16]
A. N. Generalova,; I. K. Kochneva,; E. V. Khaydukov,; V. A. Semchishen,; A. E. Guller,; A. V. Nechaev,; A. B. Shekhter,; V. P. Zubov,; A. V. Zvyagin,; S. M. Deyev, Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay. Nanoscale 2015, 7, 1709-1717.
[17]
A. Nadort,; J. B. Zhao,; E. M. Goldys, Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties. Nanoscale 2016, 8, 13099-13130.
[18]
I. I. Buchinskaya,; D. N. Karimov,; R. M. Zakalyukin,; S. Gali, Vapor-phase growth of CdF2 whiskers in the CdF2-GaF3 system. Crystallogr. Rep. 2007, 52, 170-173.
[19]
D. D. Yang,; D. D. Chen,; H. L. He,; Q. W. Pan,; Q. L. Xiao,; J. R. Qiu,; G. P. Dong, Controllable phase transformation and mid-infrared emission from Er3+-doped hexagonal-/cubic-NaYF4 nanocrystals. Sci. Rep. 2016, 6, 29871.
[20]
L. Y. Wang,; Y. D. Li, Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 2006, 6, 1645-1649.
[21]
Z. J. Yan,; D. B. Chrisey, Pulsed laser ablation in liquid for micro/ nanostructure generation. J. Photochem. Photobiol. C 2012, 13, 204-223.
[22]
A. V. Kabashin,; P. Delaporte,; A. Pereira,; D. Grojo,; R. Torres,; T. Sarnet,; M. Sentis, Nanofabrication with pulsed lasers. Nanoscale Res. Lett. 2010, 5, 454-463.
[23]
A. Barchanski,; D. Funk,; O. Wittich,; C. Tegenkamp,; B. N. Chichkov,; C. L. Sajti, Picosecond laser fabrication of functional gold-antibody nanoconjugates for biomedical applications. J. Phys. Chem. C 2015, 119, 9524-9533.
[24]
F. Mafuné,; J. Y. Kohno,; Y. Takeda,; T. Kondow,; H. Sawabe, Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 2000, 104, 8333-8337.
[25]
H. Usui,; Y. Shimizu,; T. Sasaki,; N. Koshizaki, Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J. Phys. Chem. B 2005, 109, 120-124.
[26]
D. Katsuki,; T. Sato,; R. Suzuki,; Y. Nanai,; S. Kimura,; T. Okuno, Red luminescence of Eu3+ doped ZnO nanoparticles fabricated by laser ablation in aqueous solution. Appl. Phys. A 2012, 108, 321-327.
[27]
T. Sasaki,; C. Liang,; W. T. Nichols,; Y. Shimizu,; N. Koshizaki, Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. Appl. Phys. A 2004, 79, 1489-1492.
[28]
G. S. Park,; K. M. Kim,; S. W. Mhin,; J. W. Eun,; K. B. Shim,; J. H. Ryu,; N. Koshizaki, Simple route for Y3Al5O12:Ce3+ colloidal nanocrystal via laser ablation in deionized water and its luminescence. Electrochem. Solid State Lett. 2008, 11, J23.
[29]
A. M. Edmonds,; M. A. Sobhan,; V. K. A. Sreenivasan,; E. A. Grebenik,; J. R. Rabeau,; E. M. Goldys,; A. V. Zvyagin, Nano-ruby: A promising fluorescent probe for background-free cellular imaging. Part. Part. Syst. Char. 2013, 30, 506-513.
[30]
C. H. Nee,; S. L. Yap,; T. Y. Tou,; H. C. Chang,; S. S. Yap, Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol. Sci. Rep. 2016, 6, 33966.
[31]
E. Maurer,; S. Barcikowski,; B. Gökce, Process chain for the fabrication of nanoparticle polymer composites by laser ablation synthesis. Chem. Eng. Technol. 2017, 40, 1535-1543.
[32]
Y. Tamaki,; T. Asahi,; H. Masuhara, Nanoparticle formation of vanadyl phthalocyanine by laser ablation of its crystalline powder in a poor solvent. J. Phys. Chem. A 2002, 106, 2135-2139.
[33]
S. Scaramuzza,; S. Agnoli,; V. Amendola, Metastable alloy nanoparticles, metal-oxide nanocrescents and nanoshells generated by laser ablation in liquid solution: Influence of the chemical environment on structure and composition. Phys. Chem. Chem. Phys. 2015, 17, 28076-28087.
[34]
Y. Onodera,; T. Nunokawa,; O. Odawara,; H. Wada, Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water. J. Lumin. 2013, 137, 220-224.
[35]
T. Ikehata,; Y. Onodera,; T. Nunokawa,; T. Hirano,; S. Ogura,; T. Kamachi,; O. Odawara,; H. Wada, Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid. Appl. Surf. Sci. 2015, 348, 54-59.
[36]
L. Gemini,; T. Schmitz,; R. Kling,; S. Barcikowski,; B. Gökce, Upconversion nanoparticles synthesized by ultrashort pulsed laser ablation in liquid: Effect of the stabilizing environment. ChemPhysChem 2017, 18, 1210-1216.
[37]
X. Liang,; X. Wang,; J. Zhuang,; Q. Peng,; Y. Li, Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757-2765.
[38]
S. Wilhelm, Perspectives for upconverting nanoparticles. ACS Nano 2017, 11, 10644-10653.
[39]
K. Holmberg,; B. Jönsson,; B. Kronberg,; B. Lindman, Surfactants and Polymers in Aqueous Solution; 2nd ed. Wiley & Sons, Ltd: Chichester, 2002.
[40]
S. Alyatkin,; I. Asharchuk,; K. Khaydukov,; A. Nechaev,; O. Lebedev,; Y. Vainer,; V. Semchishen,; E. Khaydukov, The influence of energy migration on luminescence kinetics parameters in upconversion nanoparticles. Nanotechnology 2017, 28, 035401.
[41]
X. S. Zhu,, Y. Chang,, Y. S. Chen, Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010, 78, 209-215.
[42]
P. P. Fedorov,; B. P. Sobolev,; S. F. Belov, Fusibility diagram of the system NaF-YF3, and the cross-section Nа0.4Y0.6F2.2-YOF. Inorg. Mater. 1979, 15, 640-643.
[43]
S. S. Perera,; D. K. Amarasinghe,; K. T. Dissanayake,; F. A. Rabuffetti, Average and local crystal structure of β-Er:Yb:NaYF4 upconverting nanocrystals probed by x-ray total scattering. Chem. Mater. 2017, 29, 6289-6297.
[44]
A. A. Blistanov,; S. P. Chernov,; D. N. Karimov,; T. V. Ouvarova, Peculiarities of the growth of disordered Na,R-fluorite (R=Y, Ce-Lu) single crystals. J. Cryst. Growth 2002, 237-239, 899-903.
[45]
M. W. Pin,; E. J. Park,; S. Choi,; Y. I. Kim,; C. H. Jeon,; T. H. Ha,; Y. H. Kim, Atomistic evolution during the phase transition on a metastable single NaYF4:Yb,Er upconversion nanoparticle. Sci. Rep. 2018, 8, 2199.
[46]
B. N. Chichkov,; C. Momma,; S. Nolte,; F. von Alvensleben,; A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109-115.
[47]
A. Rafiei Miandashti,; L. Khosravi Khorashad,; A. O. Govorov,; M. E. Kordesch,; H. H. Richardson, Time-resolved temperature-jump measurements and theoretical simulations of nanoscale heat transfer using NaYF4: Yb3+: Er3+ upconverting nanoparticles. J. Phys. Chem. C 2019, 123, 3770-3780.
[48]
H. Q. Liu,; J. K. Han,; C. McBean,; C. S. Lewis,; P. K. Routh,; M. Cotlet,; S. S. Wong, Synthesis-driven, structure-dependent optical behavior in phase-tunable NaYF4:Yb,Er-based motifs and associated heterostructures. Phys. Chem. 2017, 19, 2153-2167.
[49]
H. G. Liao,; L. K. Cui,; S. Whitelam,; H. M. Zheng, Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011-1014.
[50]
S. R. Ye,; Z. F. Chen,; Y. C. Ha,; B. J. Wiley, Real-time visualization of diffusion-controlled nanowire growth in solution. Nano Lett. 2014, 14, 4671-4676.
[51]
E. V. Khaydukov,; K. E. Mironova,; V. A. Semchishen,; A. N. Generalova,; A. V. Nechaev,; D. A. Khochenkov,; E. V. Stepanova,; O. I. Lebedev,; A. V. Zvyagin,; S. M. M. Deyev, et al. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 2016, 6, 35103.
[52]
Dyomics Catalogue Fluorescent Dyes for Bioanalytical and Hightech Applications, 2017 [Online]. https://dyomics.com/en/products/red-excitation/dy-631 (Accessed Jul 1, 2020).
File
12274_2020_3163_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 July 2020
Revised: 01 October 2020
Accepted: 08 October 2020
Published: 09 November 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors would like to acknowledge Prof. Vladislav Ya. Panchenko, PhD Sergey Y. Alyatkin, PhD Vladimir A. Semchishen, PhD Vladimir I. Yusupov and PhD Andrey V. Nechaev for helpful and valuable discussions.

This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC «Crystallography and Photonics» RAS in part of «UCNP synthesis», by the Russian Foundation for Basic Research according to the research projects № 18-29-20064 in the part of «PL analysis» and № 20-32-70174 in the part of «complex structures analysis», by the Russian Science Foundation project № 18-79-10198 in the part of «UCNP analysis». BC acknowledges financial support from Lower Saxony through "Quanten und Nanometrologie" project (QUANOMET) and DFG Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453).

Return