Journal Home > Volume 14 , Issue 4

Recently developed lead-free double perovskite nanocrystals (NCs) have been proposed for the possible application in solution- processed optoelectronic devices. However, the optoelectronic applications of double perovskite NCs have been hampered due to the structural and chemical instability in the presence of polar molecules. Here, we report a facile strategy for the synthesis and purification of Cs2AgBiBr6 double perovskite NCs that remained stable even after washing with polar solvent. This is realized with our efficient colloidal route to synthesize Cs2AgBiBr6 NCs that involve stable and strongly coordinated precursor such as silver- trioctylphosphine complex together with bismuth neodecanoate, which leads to a significantly improved chemical and colloidal stability. Using layer-by-layer solid-state ligand exchange technique, a compact and crack-free thin film of Cs2AgBiBr6 NCs were fabricated. Finally, perovskite solar cells consisting of Cs2AgBiBr6 as an absorber layer were fabricated and tested.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: Synthesis, uniform thin-film fabrication, and application in solution-processed solar cells

Show Author's information Razi Ahmad1,5Gautam Virender Nutan1Dinesh Singh2Govind Gupta1Udit Soni3Sameer Sapra4Ritu Srivastava1( )
Advanced Materials and Devices Metrology Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110012, India
Indian Reference Materials Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110012, India
Department of Biotechnology, TERI School of Advanced studies, New Delhi 110070, India
Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic

Abstract

Recently developed lead-free double perovskite nanocrystals (NCs) have been proposed for the possible application in solution- processed optoelectronic devices. However, the optoelectronic applications of double perovskite NCs have been hampered due to the structural and chemical instability in the presence of polar molecules. Here, we report a facile strategy for the synthesis and purification of Cs2AgBiBr6 double perovskite NCs that remained stable even after washing with polar solvent. This is realized with our efficient colloidal route to synthesize Cs2AgBiBr6 NCs that involve stable and strongly coordinated precursor such as silver- trioctylphosphine complex together with bismuth neodecanoate, which leads to a significantly improved chemical and colloidal stability. Using layer-by-layer solid-state ligand exchange technique, a compact and crack-free thin film of Cs2AgBiBr6 NCs were fabricated. Finally, perovskite solar cells consisting of Cs2AgBiBr6 as an absorber layer were fabricated and tested.

Keywords: thin film, solar cells, double perovskite nanocrystals, colloidal and chemical stability

References(62)

[1]
W. S. Yang,; B. W. Park,; E. H. Jung,; N. J. Jeon,; Y. C. Kim,; D. U. Lee,; S. S. Shin,; J. Seo,; E. K. Kim,; J. H. Noh, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376-1379.
[2]
Z. W. Xiao,; Z. N. Song,; Y. F. Yan, From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.
[3]
Y. Yang,; J. B. You, Make perovskite solar cells stable. Nature 2017, 544, 155-156.
[4]
I. Chung,; J. H. Song,; J. Im,; J. Androulakis,; C. D. Malliakas,; H. Li,; A. J. Freeman,; J. T. Kenney,; M. G. Kanatzidis, CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579-8587.
[5]
L. Y Huang,; W. R. L. Lambrecht, Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 2013, 88, 165203.
[6]
S. Chakraborty,; W. Xie,; N. Mathews,; M. Sherburne,; R. Ahuja,; M. Asta,; S. G. Mhaisalkar, Rational design: A high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2017, 2, 837-845.
[7]
W. Q. Liao,; D. W. Zhao,; Y. Yu,; C. R. Grice,; C. L. Wang,; A. J. Cimaroli,; P. Schulz,; W. W. Meng,; K. Zhu,; R. G. Xiong, et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 2016, 28, 9333-9340.
[8]
S. Gupta,; T. Bendikov,; G. Hodes,; D. Cahen, CsSnBr3, a lead-free halide perovskite for long-term solar cell application: Insights on SnF2 addition. ACS Energy Lett. 2016, 1, 1028-1033.
[9]
B. W. Park,; B. Philippe,; X. L. Zhang,; H. Rensmo,; G. Boschloo,; E. M. J. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806-6813.
[10]
B. Saparov,; F. Hong,; J. P. Sun,; H. S. Duan,; W. W. Meng,; S. Cameron,; I. G. Hill,; Y. F. Yan,; D. B. Mitzi, Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 2015, 27, 5622-5632.
[11]
T. C. Jellicoe,; J. M. Richter,; H. F. J. Glass,; M. Tabachnyk,; R. Brady,; S. E. Dutton,; A. Rao,; R. H. Friend,; D. Credgington,; N. C. Greenham, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941-2944.
[12]
F. Giustino,; H. J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 2016, 1, 1233-1240.
[13]
A. H. Slavney,; T. Hu,; A. M. Lindenberg,; H. I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138-2141.
[14]
E. T. McClure,; M. R. Ball,; W. Windl,; P. M. Woodward, Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 2016, 28, 1348-1354.
[15]
G. Volonakis,; M. R. Filip,; A. A. Haghighirad,; N. Sakai,; B. Wenger,; H. J. Snaith,; F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 2016, 7, 1254-1259.
[16]
C. N. Savory,; A. Walsh,; D. O. Scanlon, Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Lett. 2016, 1, 949-955.
[17]
G. Volonakis,; A. A. Haghighirad,; R. L. Milot,; W. H. Sio,; M. R. Filip,; B. Wenger,; M. B. Johnston,; L. M. Herz,; H. J. Snaith,; F. Giustino, Cs2InAgCl6: A new lead-free halide double perovskite with direct band Gap. J. Phys. Chem. Lett. 2017, 8, 772-778.
[18]
T. T. Tran,; J. R. Panella,; J. R. Chamorro,; J. R. Morey,; T. M. McQueen, Designing indirect-direct bandgap transitions in double perovskites. Mater. Horiz. 2017, 4, 688-693.
[19]
M. Pantaler,; K. T. Cho,; V. I. E. Queloz,; I. García Benito,; C. Fettkenhauer,; I. Anusca,; M. K. Nazeeruddin,; D. C. Lupascu,; G. Grancini, Hysteresis-free lead-free double-perovskite solar cells by interface engineering. ACS Energy Lett. 2018, 3, 1781-1786.
[20]
E. Greul,; M. L. Petrus,; A. Binek,; P. Docampo,; T. Bein, Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 2017, 5, 19972-19981.
[21]
C. C. Wu,; Q. H. Zhang,; Y. Liu,; W. Luo,; X. Guo,; Z. R. Huang,; H. Ting,; W. H. Sun,; X. R. Zhong,; S. Y. Wei, et al. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 2018, 5, 1700759.
[22]
W. H. Ning,; F. Wang,; B. Wu,; J. Lu,; Z. B. Yan,; X. J. Liu,; Y. T. Tao,; J. M. Liu,; W. Huang,; M. Fahlman, et al. Long electron-hole diffusion length in high-quality lead-free double perovskite films. Adv. Mater. 2018, 30, 1706246.
[23]
W. Y. Gao,; C. X. Ran,; J. Xi,; B. Jiao,; W. W. Zhang,; M. C. Wu,; X. Hou,; Z. X. Wu, High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. ChemPhysChem 2018, 19, 1696-1700.
[24]
R. Kentsch,; M. Scholz,; J. Horn,; D. Schlettwein,; K. Oum,; T. Lenzer, Exciton dynamics and electron-phonon coupling affect the photovoltaic performance of the Cs2AgBiBr6 double perovskite. J. Phys. Chem. C 2018, 122, 25940-25947.
[25]
F. Igbari,; R. Wang,; Z. K. Wang,; X. J. Ma,; Q. Wang,; K. L. Wang,; Y. Zhang,; L. S. Liao,; Y. Yang, Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Lett. 2019, 19, 2066-2073.
[26]
X. Q. Yang,; Y. H. Chen,; P. Y. Liu,; H. M. Xiang,; W. Wang,; R. Ran,; W. Zhou,; Z. P. Shao, Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Adv. Funct. Mater. 2020, 30, 2001557.
[27]
A. D. Jodlowski,; D. Rodríguez-Padrón,; R. Luque,; G. de Miguel, Alternative perovskites for photovoltaics. Adv. Energy Mater. 2018, 8, 1703120.
[28]
S. E. Creutz,; E. N. Crites,; M. C. De Siena,; D. R. Gamelin, Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Lett. 2018, 18, 1118-1123.
[29]
Y. Bekenstein,; J. C. Dahl,; J. Huang,; W. T. Osowiecki,; J. K. Swabeck,; E. M. Chan,; P. D. Yang,; A. P. Alivisatos, The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Lett. 2018, 18, 3502-3508.
[30]
F. Locardi,; M. Cirignano,; D. Baranov,; Z. Y. Dang,; M. Prato,; F. Drago,; M. Ferretti,; V. Pinchetti,; M. Fanciulli,; S. Brovelli, et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 2018, 140, 12989-12995.
[31]
B. Yang,; F. Hong,; J. S. Chen,; Y. X. Tang,; L. Yang,; Y. B. Sang,; X. S. Xia,; J. W. Guo,; H. X. He,; S. Q. Yang, et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1− yBiyX6 (X: Br, Cl; 0 ≤ y ≤1) double perovskite nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 2278-2283.
[32]
W. Lee,; S. Hong,; S. Kim, Colloidal synthesis of lead-free silver- indium double-perovskite Cs2AgInCl6 nanocrystals and their doping with lanthanide ions. J. Phys. Chem. C 2019, 123, 2665-2672.
[33]
Y. Liu,; Y. Y. Jing,; J. Zhao,; Q. L. Liu,; Z. G. Xia, Design optimization of lead-free perovskite Cs2AgInCl6:Bi nanocrystals with 11.4% photoluminescence quantum yield. Chem. Mater. 2019, 31, 3333-3339.
[34]
J. C. Dahl,; W. T. Osowiecki,; Y. Cai,; J. K. Swabeck,; Y. Bekenstein,; M. Asta,; E. M. Chan,; A. P. Alivisatos, Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals. Chem. Mater. 2019, 31, 3134-3143.
[35]
F. Locardi,; E. Sartori,; J. Buha,; J. Zito,; M. Prato,; V. Pinchetti,; M. L. Zaffalon,; M. Ferretti,; S. Brovelli,; I. Infante, et al. Emissive Bi-doped double perovskite Cs2Ag1-xNaxInCl6 nanocrystals. ACS Energy Lett. 2019, 4, 1976-1982.
[36]
R. S. Lamba,; P. Basera,; S. Bhattacharya,; S. Sapra, Band gap engineering in Cs2(NaxAg1-x)BiCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 2019, 10, 5173-5181.
[37]
L. Zhou,; Y. F. Xu,; B. X. Chen,; D. B. Kuang,; C. Y. Su, Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 2018, 14, 1703762.
[38]
A. S. Kshirsagar,; A. Nag, Synthesis and optical properties of colloidal Cs2AgSb1−xBixCl6 double perovskite nanocrystals. J. Chem. Phys. 2019, 151, 161101.
[39]
A. H. Ip,; S. M. Thon,; S. Hoogland,; O. Voznyy,; D. Zhitomirsky,; R. Debnath,; L. Levina,; L. R. Rollny,; G. H. Carey,; A. Fischer, et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577-582.
[40]
J. H. Li,; L. M. Xu,; T. Wang,; J. Z. Song,; J. W. Chen,; J. Xue,; Y. H. Dong,; B. Cai,; Q. S. Shan,; B. N. Han, et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.
[41]
M. V. Kovalenko,; M. Scheele,; D. V. Talapin, Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 1417-1420.
[42]
R. Ahmad,; V. Arora,; R. Srivastava,; S. Sapra,; M. N. Kamalasanan, Enhanced performance of organic photovoltaic devices by incorporation of tetrapod-shaped CdSe nanocrystals in polymer-fullerene systems. Phys. Status Solidi A 2013, 210, 785-790.
[43]
A. Swarnkar,; A. R. Marshall,; E. M. Sanehira,; B. D. Chernomordik,; D. T. Moore,; J. A. Christians,; T. Chakrabarti,; J. M. Luther, Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92-95.
[44]
J. M. Luther,; M. Law,; Q. Song,; C. L. Perkins,; M. C. Beard,; A. J. Nozik, Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2008, 2, 271-280.
[45]
Z. H. Xu,; Y. Li,; J. Z. Li,; C. D. Pu,; J. H. Zhou,; L. L. Lv,; X. G. Peng, Formation of size-tunable and nearly monodisperse InP nanocrystals: Chemical reactions and controlled synthesis. Chem. Mater. 2019, 31, 5331-5341.
[46]
F. Liu,; Y. H. Zhang,; C. Ding,; S. Kobayashi,; T. Izuishi,; N. Nakazawa,; T. Toyoda,; T. Ohta,; S. Hayase,; T. Minemoto, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373-10383.
[47]
L. Protesescu,; S. Yakunin,; M. I. Bodnarchuk,; F. Krieg,; R. Caputo,; C. H. Hendon,; R. X. Yang,; A. Walsh,; M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[48]
C. Lu,; H. Li,; K. Kolodziejski,; C. C. Dun,; W. X. Huang,; D. Carroll,; S. M. Geyer, Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762-768.
[49]
Y. Li,; X. Y. Wang,; W. N. Xue,; W. Wang,; W. Zhu,; L. J. Zhao, Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785-789.
[50]
M. Imran,; V. Caligiuri,; M. J. Wang,; L. Goldoni,; M. Prato,; R. Krahne,; L. De Trizio,; L. Manna, Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 2656-2664.
[51]
V. K. Ravi,; N. Singhal,; A. Nag, Initiation and future prospects of colloidal metal halide double-perovskite nanocrystals: Cs2AgBiX6 (X = Cl, Br, I). J. Mater. Chem. A 2018, 6, 21666-21675.
[52]
J. A. Steele,; P. Puech,; M. Keshavarz,; R. X. Yang,; S. Banerjee,; E. Debroye,; C. W. Kim,; H. F. Yuan,; N. H. Heo,; J. Vanacken, et al. Giant electron-phonon coupling and deep conduction band resonance in metal halide double perovskite. ACS Nano 2018, 12, 8081-8090.
[53]
Y. H. Zhang,; J. Yin,; M. R. Parida,; G. H. Ahmed,; J. Pan,; O. M. Bakr,; J. L. Brédas,; O. F. Mohammed, Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals. J. Phys. Chem. Lett. 2017, 8, 3173-3177.
[54]
E. M. Hutter,; M. C. Gélvez-Rueda,; A. Osherov,; V. Bulović,; F. C. Grozema,; S. D. Stranks,; T. J. Savenije, Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 2017, 16, 115-120.
[55]
J. Tang,; K. W. Kemp,; S. Hoogland,; K. S. Jeong,; H. Liu,; L. Levina,; M. Furukawa,; X. H. Wang,; R. Debnath,; D. Cha, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765-771.
[56]
S. J. Oh,; Z. Q. Wang,; N. E. Berry,; J. H. Choi,; T. S. Zhao,; E. A. Gaulding,; T. Paik,; Y. M. Lai,; C. B. Murray,; C. R. Kagan, Engineering charge injection and charge transport for high performance PbSe nanocrystal thin film devices and circuits. Nano Lett. 2014, 14, 6210-6216.
[57]
M. Bernechea,; N. C. Miller,; G. Xercavins,; D. So,; A. Stavrinadis,; G. Konstantatos, Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 2016, 10, 521-525.
[58]
S. Jeon,; J. Ahn,; H. Kim,; H. K. Woo,; J. Bang,; W. S. Lee,; D. Kim,; A. Hossain,; S. J. Oh, Investigation of the chemical effect of solvent during ligand exchange on nanocrystal thin films for wearable sensor applications. J. Phys. Chem. C 2019, 123, 11001-11010.
[59]
R. Ahmad,; R. Srivastava,; H. Bhardwaj,; S. Yadav,; V. Nand Singh,; S. Chand,; N. Singh,; S. Sapra, Size-tunable synthesis of colloidal silver sulfide nanocrystals for solution-processed photovoltaic applications. ChemistrySelect 2018, 3, 5620-5629.
[60]
Z. J. Ning,; H. P. Dong,; Q. Zhang,; O. Voznyy,; E. H. Sargent, Solar cells based on inks of n-type colloidal quantum dots. ACS Nano 2014, 8, 10321-10327.
[61]
C. H. M. Chuang,; P. R. Brown,; V. Bulović,; M. G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796-801.
[62]
R. Ahmad,; R. Srivastava,; S. Yadav,; D. Singh,; G. Gupta,; S. Chand,; S. Sapra, Functionalized molybdenum disulfide nanosheets for 0D-2D hybrid nanostructures: Photoinduced charge transfer and enhanced photoresponse. J. Phys. Chem. Lett. 2017, 8, 1729-1738.
File
12274_2020_3161_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 February 2020
Revised: 03 October 2020
Accepted: 08 October 2020
Published: 19 November 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors are grateful to the Director of the NPL, New Delhi, India for the facility. R. A. gratefully acknowledge the financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi, for the award of RA.

Return