Journal Home > Volume 14 , Issue 5

Metal-semiconductor ohmic contacts are required to reduce the energy dissipation for two-dimensional (2D) electronic devices, and phase engineering of 2D transition-metal dichalcogenides (TMDCs) is a promising approach for building ohmic contacts. Here, 2D in-plane 1T′-2H MoTe2 homojunctions were prepared by direct epitaxy via vapor deposition. The interface properties of in-plane 1T′-2H MoTe2 homojunction were investigated in detail by combining experiments, calculations and theories. The ohmic contact properties of 1T′-2H MoTe2 homojunction were proved according to Kelvin force probe microscopy and density functional theory calculations. The charge carriers robust transport in in-plane 1T′-2H MoTe2 homojunction without Fermi-level pinning can be well described by Poisson equation and band alignment. These results indicate that phase engineering of 2D TMDCs is promising to construct ohmic contacts for device applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Robust transport of charge carriers in in-plane 1Tʹ-2H MoTe2 homojunctions with ohmic contact

Show Author's information Donglin Lu§Zhenqing Li§Congsheng XuSiwei LuoChaoyu HeJun LiGang GuoGuolin HaoXiang Qi( )Jianxin Zhong( )
Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China

Abstract

Metal-semiconductor ohmic contacts are required to reduce the energy dissipation for two-dimensional (2D) electronic devices, and phase engineering of 2D transition-metal dichalcogenides (TMDCs) is a promising approach for building ohmic contacts. Here, 2D in-plane 1T′-2H MoTe2 homojunctions were prepared by direct epitaxy via vapor deposition. The interface properties of in-plane 1T′-2H MoTe2 homojunction were investigated in detail by combining experiments, calculations and theories. The ohmic contact properties of 1T′-2H MoTe2 homojunction were proved according to Kelvin force probe microscopy and density functional theory calculations. The charge carriers robust transport in in-plane 1T′-2H MoTe2 homojunction without Fermi-level pinning can be well described by Poisson equation and band alignment. These results indicate that phase engineering of 2D TMDCs is promising to construct ohmic contacts for device applications.

Keywords: built-in potential, surface potential, 1T′-2H MoTe2 homojunction, ohmic contact

References(63)

[1]
A. Allain,; J. B. Kang,; K. Banerjee,; A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.
[2]
D. Jena,; K. Banerjee,; G. H. Xing, 2D crystal semiconductors: Intimate contacts. Nat. Mater. 2014, 13, 1076-1078.
[3]
Y. Liu,; J. Guo,; E. B. Zhu,; L. Liao,; S. J. Lee,; M. N. Ding,; I. Shakir,; V. Gambin,; Y. Huang,; X. F. Duan, Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[4]
R. T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304.
[5]
G. Fiori,; F. Bonaccorso,; G. Iannaccone,; T. Palacios,; D. Neumaier,; A. Seabaugh,; S. K. Banerjee,; L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.
[6]
J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 1947, 71, 717-727.
[7]
J. H. Kang,; W. Liu,; D. Sarkar,; D. Jena,; K. Banerjee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.
[8]
R. T. Tung, Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078-6081.
[9]
C. R. Dean,; A. F. Young,; I. Meric,; C. Lee,; L. Wang,; S. Sorgenfrei,; K. Watanabe,; T. Taniguchi,; P. Kim,; K. L. Shepard, et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[10]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[11]
N. R. Pradhan,; D. Rhodes,; S. M. Feng,; Y. Xin,; S. Memaran,; B. H. Moon,; H. Terrones,; M. Terrones,; L. Balicas, Field-effect transistors based on few-layered α-MoTe2. ACS Nano 2014, 8, 5911-5920.
[12]
C. Ruppert,; O. B. Aslan,; T. F. Heinz, Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231-6236.
[13]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[14]
Y. Zhang,; T. R. Chang,; B. Zhou,; Y. T. Cui,; H. Yan,; Z. K. Liu,; F. Schmitt,; J. Lee,; R. Moore,; Y. L. Chen, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111-115.
[15]
D. Xiao,; G. B. Liu,; W. X. Feng,; X. D. Xu,; W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.
[16]
Y. Liu,; X. D. Duan,; Y. Huang,; X. F. Duan, Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388-6409.
[17]
C. N. R. Rao,; K. Gopalakrishnan,; U. Maitra, Comparative study of potential applications of Graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 2015, 7, 7809-7832.
[18]
X. Z. Bao,; Q. D. Ou,; Z. Q. Xu,; Y. P. Zhang,; Q. L. Bao,; H. Zhang, Band structure engineering in 2D materials for optoelectronic applications. Adv. Mater. Technol. 2018, 3, 1800072.
[19]
J. C. Zhang,; Y. C. Huang,; Z. J. Tan,; T. R. Li,; Y. C. Zhang,; K. C. Jia,; L. Lin,; L. Z. Sun,; X. W. Chen,; Z. Z. Li, et al. Low-temperature heteroepitaxy of 2D PbI2/Graphene for large-area flexible photodetectors. Adv. Mater. 2018, 30, 1803194.
[20]
S. Das,; H. Y. Chen,; A. V. Penumatcha,; J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.
[21]
W. S. Leong,; X. Luo,; Y. D. Li,; K. H. Khoo,; S. Y. Quek,; J. T. L. Thong, Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. ACS Nano 2015, 9, 869-877.
[22]
R. Kappera,; D. Voiry,; S. E. Yalcin,; B. Branch,; G. Gupta,; A. D. Mohite,; M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[23]
D. H. Keum,; S. Cho,; J. H. Kim,; D. H. Choe,; H. J. Sung,; M. Kan,; H. Kang,; J. Y. Hwang,; S. W. Kim,; H. Yang, et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482-486.
[24]
Y. Yoo,; Z. P. DeGregorio,; Y. Su,; S. J. Koester,; J. E. Johns, In-plane 2H-1T' MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 2017, 29, 1605461.
[25]
S. Cho,; S. Kim,; J. H. Kim,; J. Zhao,; J. Seok,; D. H. Keum,; J. Baik,; D. H. Choe,; K. J. Chang,; K. Suenaga, et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625-628.
[26]
J. H. Sung,; H. Heo,; S. Si,; Y. H. Kim,; H. R. Noh,; K. Song,; J. Kim,; C. S. Lee,; S. Y. Seo,; D. H. Kim, et al. Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol. 2017, 12, 1064-1070.
[27]
Z. J. Wang,; D. Gresch,; A. A. Soluyanov,; W. W. Xie,; S. Kushwaha,; X. Dai,; M. Troyer,; R. J. Cava,; B. A. Bernevig, MoTe2: A type-II Weyl topological metal. Phys. Rev. Lett. 2016, 117, 056805.
[28]
Y. Sun,; S. C. Wu,; M. N. Ali,; C. Felser,; B. H. Yan, Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 2015, 92, 161107.
[29]
Y. P. Qi,; P. G. Naumov,; M. N. Ali,; C. R. Rajamathi,; W. Schnelle,; O. Barkalov,; M. Hanfland,; S. C. Wu,; C. Shekhar,; Y. Sun, et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 2016, 7, 11038.
[30]
S. Q. Liu,; J. Z. Li,; B. W. Shi,; X. Y. Zhang,; Y. Y. Pan,; M. Ye,; R. Quhe,; Y. Y. Wang,; H. Zhang,; J. H. Yan, et al. Gate-tunable interfacial properties of in-plane ML MX2 1T′-2H heterojunctions. J. Mater. Chem. C 2018, 6, 5651-5661.
[31]
Z. P. Dong,; J. Guo, On low-resistance contacts to 2-D MoTe2 by crystalline phase junctions. IEEE Trans. Electron Dev. 2018, 65, 1583-1588.
[32]
X. Zhang,; Z. H. Jin,; L. Q. Wang,; J. A. Hachtel,; E. Villarreal,; Z. X. Wang,; T. Ha,; Y. Nakanishi,; C. S. Tiwary,; J. W. Lai, et al. Low contact barrier in 2H/1T' MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces 2019, 11, 12777-12785.
[33]
Y. Y. Yu,; G. Wang,; S. Q. Qin,; N. N. Wu,; Z. Y. Wang,; K. He,; X. A. Zhang, Molecular beam epitaxy growth of atomically ultrathin MoTe2 lateral heterophase homojunctions on graphene substrates. Carbon 2017, 115, 526-531.
[34]
Y. Tan,; F. Luo,; M. J. Zhu,; X. L. Xu,; Y. Ye,; B. Li,; G. Wang,; W. Luo,; X. M. Zheng,; N. N. Wu, et al. Controllable 2H-to-1T' phase transition in few-layer MoTe2. Nanoscale 2018, 10, 19964-19971.
[35]
W. Kohn,; L. J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.
[36]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[37]
G. Kresse,; J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[38]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[39]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[40]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[41]
H. J. Monkhorst,; J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[42]
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
[43]
L. Yang,; W. F. Zhang,; J. Li,; S. Cheng,; Z. J. Xie,; H. X. Chang, Tellurization velocity-dependent metallic-semiconducting-metallic phase evolution in chemical vapor deposition growth of large-area, few-layer MoTe2. ACS Nano 2017, 11, 1964-1972.
[44]
T. R. Wu,; G. Q. Ding,; H. L. Shen,; H. M. Wang,; L. Sun,; D. Jiang,; X. M. Xie,; M. C. Jiang, Triggering the continuous growth of graphene toward millimeter-sized grains. Adv. Funct. Mater. 2013, 23, 198-203.
[45]
T. Chen,; G. L. Hao,; G. Wang,; B. Li,; L. Z. Kou,; H. Yang,; X. M. Zheng,; J. X. Zhong, Controlled growth of atomically thin MoSe2 films and nanoribbons by chemical vapor deposition. 2D Mater. 2019, 6, 025002.
[46]
J. C. Park,; S. J. Yun,; H. Kim,; J. H. Park,; S. H. Chae,; S. J. An,; J. G. Kim,; S. M. Kim,; K. K. Kim,; Y. H. Lee, Phase-engineered synthesis of centimeter-scale 1T′-and 2H-molybdenum ditelluride thin films. ACS Nano 2015, 9, 6548-6554.
[47]
J. Y. Wang,; X. Luo,; S. S. Li,; I. Verzhbitskiy,; W. J. Zhao,; S. F. Wang,; S. Y. Quek,; G. Eda, Determination of crystal axes in semimetallic T′-MoTe2 by polarized Raman spectroscopy. Adv. Funct. Mater. 2017, 27, 1604799.
[48]
M. Yamamoto,; S. T. Wang,; M. Y. Ni,; Y. F. Lin,; S. L. Li,; S. Aikawa,; W. B. Jian,; K. Ueno,; K. Wakabayashi,; K. Tsukagoshi, Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 2014, 8, 3895-3903.
[49]
G. L. Hao,; L. Z. Kou,; D. L. Lu,; J. Peng,; J. Li,; C. Tang,; J. X. Zhong, Electrostatic properties of two-dimensional WSe2 nanostructures. J. Appl. Phys. 2016, 119, 035301.
[50]
J. Guan,; H. J. Chuang,; Z. X. Zhou,; D. Tománek, Optimizing charge injection across transition metal dichalcogenide heterojunctions: Theory and experiment. ACS Nano 2017, 11, 3904-3910.
[51]
B. S. Mashford,; M. Stevenson,; Z. Popovic,; C. Hamilton,; Z. Q. Zhou,; C. Breen,; J. Steckel,; V. Bulovic,; M. Bawendi,; S. Coe-Sullivan, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407-412.
[52]
F. Mortreuil,; C. Villeneuve-Faure,; L. Boudou,; K. Makasheva,; G. Teyssedre, Charge injection phenomena at the metal/dielectric interface investigated by Kelvin probe force microscopy. J. Phys. D Appl. Phys. 2017, 50, 175302.
[53]
M. Tosun,; D. Y. Fu,; S. B. Desai,; C. Ko,; J. S. Kang,; D. H. Lien,; M. Najmzadeh,; S. Tongay,; J. Q. Wu,; A. Javey, MoS2 heterojunctions by thickness modulation. Sci. Rep. 2015, 5, 10990.
[54]
J. Kang,; S. Tongay,; J. Zhou,; J. B. Li,; J. Q. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.
[55]
Y. J. Yu,; Y. Zhao,; S. Ryu,; L. E. Brus,; K. S. Kim,; P. Kim, Tuning the graphene work function by electric field effect. Nano Lett. 2009, 9, 3430-3434.
[56]
C. X. Zheng,; Q. H. Zhang,; B. Weber,; H. Ilatikhameneh,; F. Chen,; H. Sahasrabudhe,; R. Rahman,; S. Q. Li,; Z. Chen,; J. Hellerstedt, et al. Direct observation of 2D electrostatics and ohmic contacts in template-grown Graphene/WS2 heterostructures. ACS Nano 2017, 11, 2785-2793.
[57]
X. L. Xu,; S. L. Chen,; S. Liu,; X. Cheng,; W. J. Xu,; P. Li,; Y. Wan,; S. Q. Yang,; W. T. Gong,; K. Yuan, et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J. Am. Chem. Soc. 2019, 141, 2128-2134.
[58]
J. Y. Noh,; H. Kim,; Y. S. Kim, Stability and electronic structures of native defects in single-layer MoS2. Phys. Rev. B 2014, 89, 205417.
[59]
H. P. Komsa,; A. V. Krasheninnikov, Native defects in bulk and monolayer MoS2 from first principles. Phys. Rev. B 2015, 91, 125304.
[60]
I. Sharma,; B. R. Mehta, Enhanced charge separation at 2D MoS2/ZnS heterojunction: KPFM based study of interface photovoltage. Appl. Phys. Lett. 2017, 110, 061602.
[61]
J. E. Padilha,; A. Fazzio,; A. J. R. Da Silva, Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 2015, 114, 066803.
[62]
W. Hu,; T. Wang,; R. Q. Zhang,; J. L. Yang, Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers. J. Mater. Chem. C 2016, 4, 1776-1781.
[63]
Y. Zhang,; Y. Liu,; Z. L. Wang, Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004-3013.
File
12274_2020_3155_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 July 2020
Revised: 14 September 2020
Accepted: 30 September 2020
Published: 05 January 2021
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (No. 11874316), Scientific Research Fund of Hunan Provincial Education Department (No. 18A059), the Hunan Provincial Innovation Foundation for Postgraduate (No. CX2018B321), the Project of Xiangtan Science and Technology Bureau (No. CXY-ZD20172002), and Innovative Research Team in University (No. IRT 17R91).

Return