Journal Home > Volume 14 , Issue 5

Two-dimensional (2D) materials have recently provided a new perspective on optoelectronics because of their unique layered structure and excellent physical properties. However, their potential use as optoelectric devices has been limited by the trade-off between photoresponsivity and response time. Here, based on a vertically stacked atomically thin p-n junction, we propose a gap-mode plasmon structure that simultaneously enables enhanced responsivity and rapid photodetection. The atomically thin 2D materials act as a spacer for enhancing the gap-mode plasmons, and their short transit length in the vertical direction allows fast photocarrier transport. We demonstrate a high responsivity of up to 8.67 A/W with a high operation speed that exceeds 35 MHz under a 30 nW laser power. Spectral photocurrent, absorption, and a numerical simulation are used to verify the effectiveness of the gap-mode plasmons in the device. We believe that the design strategy proposed in this study can pave the way for a platform to overcome the trade-off between responsivity and response time.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomically thin heterostructure with gap-mode plasmon for overcoming trade-off between photoresponsivity and response time

Show Author's information Khang June Lee§Cheolmin Park§Hyeok Jun JinGwang Hyuk ShinSung-Yool Choi( )
School of Electrical Engineering, Center for Advanced Materials Discovery towards 3D Displays, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

Abstract

Two-dimensional (2D) materials have recently provided a new perspective on optoelectronics because of their unique layered structure and excellent physical properties. However, their potential use as optoelectric devices has been limited by the trade-off between photoresponsivity and response time. Here, based on a vertically stacked atomically thin p-n junction, we propose a gap-mode plasmon structure that simultaneously enables enhanced responsivity and rapid photodetection. The atomically thin 2D materials act as a spacer for enhancing the gap-mode plasmons, and their short transit length in the vertical direction allows fast photocarrier transport. We demonstrate a high responsivity of up to 8.67 A/W with a high operation speed that exceeds 35 MHz under a 30 nW laser power. Spectral photocurrent, absorption, and a numerical simulation are used to verify the effectiveness of the gap-mode plasmons in the device. We believe that the design strategy proposed in this study can pave the way for a platform to overcome the trade-off between responsivity and response time.

Keywords: photodetectors, atomically thin heterostructure, gap-mode plasmons, high responsivity, fast response time

References(29)

[1]
X. Zhou,; X. Z. Hu,; J. Yu,; S. Y. Liu,; Z. W. Shu,; Q. Zhang,; H. Q. Li,; Y. Ma,; H. Xu,; T. Y. Zhai, 2D layered material-based van der waals heterostructures for optoelectronics. Adv. Funct. Mater. 2018, 28, 1706587.
[2]
Y. Liu,; N. O. Weiss,; X. D. Duan,; H. C. Cheng,; Y. Huang,; X. F. Duan, Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[3]
J. B. Cheng,; C. L. Wang,; X. M. Zou,; L. Liao, Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater. 2019, 7, 1800441.
[4]
G. Konstantatos,; M. Badioli,; L. Gaudreau,; J. Osmond,; M. Bernechea,; F. P. G. De Arquer,; F. Gatti,; F. H. L. Koppens, Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363-368.
[5]
T. Yu,; F. Wang,; Y. Xu,; L. L. Ma,; X. D. Pi,; D. R. Yang, Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors. Adv. Mater. 2016, 28, 4912-4919.
[6]
T. Mueller,; F. N. Xia,; P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
[7]
M. Massicotte,; P. Schmidt,; F. Vialla,; K. G. Schädler,; A. Reserbat-Plantey,; K. Watanabe,; T. Taniguchi,; K. J. Tielrooij,; F. H. L. Koppens, Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42-46.
[8]
Q. S. Lv,; F. G. Yan,; X. Wei,; K. Y. Wang, High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 Heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.
[9]
P. Kang,; M. C. Wang,; P. M. Knapp,; S. Nam, Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 2016, 28, 4639-4645.
[10]
T. J. Echtermeyer,; L. Britnell,; P. K. Jasnos,; A. Lombardo,; R. V. Gorbachev,; A. N. Grigorenko,; A. K. Geim,; A. C. Ferrari,; K. S. Novoselov, Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2011, 2, 458.
[11]
P. Ma,; Y. Salamin,; B. Baeuerle,; A. Josten,; W. Heni,; A. Emboras,; J. Leuthold, Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 2019, 6, 154-161.
[12]
D. Paria,; K. Roy,; H. J. Singh,; S. Kumar,; S. Raghavan,; A. Ghosh,; A. Ghosh, Ultrahigh field enhancement and photoresponse in atomically separated arrays of plasmonic dimers. Adv. Mater. 2015, 27, 1751-1758.
[13]
Y. Huang,; L. W. Ma,; M. J. Hou,; J. H. Li,; Z. Xie,; Z. J. Zhang, Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror. Sci. Rep. 2016, 6, 30011.
[14]
S. Mubeen,; S. P. Zhang,; N. Kim,; S. Lee,; S. Krämer,; H. X. Xu,; M. Moskovits, Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 2012, 12, 2088-2094.
[15]
G. Hajisalem,; M. S. Nezami,; R. Gordon, Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett. 2014, 14, 6651-6654.
[16]
Z. Q. Wu,; J. L. Yang,; N. K. Manjunath,; Y. J. Zhang,; S. R. Feng,; Y. H. Lu,; J. H. Wu,; W. W. Zhao,; C. Y. Qiu,; J. F. Li, et al. Gap-mode surface-plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv. Mater. 2018, 30, 1706527.
[17]
B. Sun,; Z. Y. Wang,; Z. Y. Liu,; X. H. Tan,; X. Y. Liu,; T. L. Shi,; J. X. Zhou,; G. L. Liao, Tailoring of silver nanocubes with optimized localized surface plasmon in a gap mode for a flexible MoS2 photodetector. Adv. Funct. Mater. 2019, 29, 1900541.
[18]
K. J. Lee,; S. Kim,; W. Hong,; H. Park,; M. S. Jang,; K. Yu,; S. Y. Choi, Observation of wavelength-dependent quantum plasmon tunneling with varying the thickness of graphene spacer. Sci. Rep. 2019, 9, 1199.
[19]
J. Mertens,; A. L. Eiden,; D. O. Sigle,; F. M. Huang,; A. Lombardo,; Z. P. Sun,; R. S. Sundaram,; A. Colli,; C. Tserkezis,; J. Aizpurua, et al. Controlling subnanometer gaps in plasmonic dimers using graphene. Nano Lett. 2013, 13, 5033-5038.
[20]
K. J. Lee,; D. Kim,; B. C. Jang,; D. J. Kim,; H. Park,; D. Y. Jung,; W. Hong,; T. K. Kim,; Y. K. Choi,; S. Y. Choi, Multilayer graphene with a rippled structure as a spacer for improving plasmonic coupling. Adv. Funct. Mater. 2016, 26, 5093-5101.
[21]
X. H. Li,; W. C. H. Choy,; X. G. Ren,; D. Zhang,; H. F. Lu, Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system. Adv. Funct. Mater. 2014, 24, 3114-3122.
[22]
K. J. Lee,; K. Kwon,; S. Kim,; W. Hong,; J. Park,; K. Yu,; S. Y. Choi, Gap-mode plasmon-induced photovoltaic effect in a vertical multilayer graphene homojunction. Adv. Opt. Mater. 2020, 8, 1901519.
[23]
T. Roy,; M. Tosun,; J. S. Kang,; A. B. Sachid,; S. B. Desai,; M. Hettick,; C. C. Hu,; A. Javey, Field-effect transistors built from all two-dimensional material components. ACS Nano 2014, 8, 6259-6264.
[24]
S. Y. Yang,; J. G. Oh,; D. Y. Jung,; H. Choi,; C. H. Yu,; J. Shin,; C. G. Choi,; B. J. Cho,; S. Y. Choi, Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom. Small 2015, 11, 175-181.
[25]
M. M. Furchi,; A. Pospischil,; F. Libisch,; J. Burgdörfer,; T. Mueller, Photovoltaic effect in an electrically tunable van der waals heterojunction. Nano Lett. 2014, 14, 4785-4791.
[26]
P. Tonndorf,; R. Schmidt,; P. Böttger,; X. Zhang,; J. Börner,; A. Liebig,; M. Albrecht,; C. Kloc,; O. Gordan,; D. R. T. Zahn, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908-4916.
[27]
J. J. Chen,; Q. S. Wang,; J. Meng,; X. X. Ke,; G. Van Tendeloo,; Y. Q. Bie,; J. K. Liu,; K. H. Liu,; Z. M. Liao,; D. Sun, et al. Photovoltaic effect and evidence of carrier multiplication in graphene vertical homojunctions with asymmetrical metal contacts. ACS Nano 2015, 9, 8851-8858.
[28]
C. H. Lee,; G. H. Lee,; A. M. Van Der Zande,; W. C. Chen,; Y. L. Li,; M. Y. Han,; X. Cui,; G. Arefe,; C. Nuckolls,; T. F. Heinz, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
[29]
H. S. Lee,; J. Ahn,; W. Shim,; S. Im,; D. K. Hwang, 2D WSe2/MoS2 van der Waals heterojunction photodiode for visible-near infrared broadband detection. Appl. Phys. Lett. 2018, 113, 163102.
File
12274_2020_3154_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 July 2020
Revised: 07 September 2020
Accepted: 30 September 2020
Published: 29 December 2020
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) through Basic Research Program (No. 2019R1A2C2009171) and Creative Materials Discovery Program (No. 2016M3D1A1900035).

Return