AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomically thin heterostructure with gap-mode plasmon for overcoming trade-off between photoresponsivity and response time

Khang June Lee§Cheolmin Park§Hyeok Jun JinGwang Hyuk ShinSung-Yool Choi( )
School of Electrical Engineering, Center for Advanced Materials Discovery towards 3D Displays, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) materials have recently provided a new perspective on optoelectronics because of their unique layered structure and excellent physical properties. However, their potential use as optoelectric devices has been limited by the trade-off between photoresponsivity and response time. Here, based on a vertically stacked atomically thin p-n junction, we propose a gap-mode plasmon structure that simultaneously enables enhanced responsivity and rapid photodetection. The atomically thin 2D materials act as a spacer for enhancing the gap-mode plasmons, and their short transit length in the vertical direction allows fast photocarrier transport. We demonstrate a high responsivity of up to 8.67 A/W with a high operation speed that exceeds 35 MHz under a 30 nW laser power. Spectral photocurrent, absorption, and a numerical simulation are used to verify the effectiveness of the gap-mode plasmons in the device. We believe that the design strategy proposed in this study can pave the way for a platform to overcome the trade-off between responsivity and response time.

Electronic Supplementary Material

Download File(s)
12274_2020_3154_MOESM1_ESM.pdf (1.4 MB)

References

[1]
X. Zhou,; X. Z. Hu,; J. Yu,; S. Y. Liu,; Z. W. Shu,; Q. Zhang,; H. Q. Li,; Y. Ma,; H. Xu,; T. Y. Zhai, 2D layered material-based van der waals heterostructures for optoelectronics. Adv. Funct. Mater. 2018, 28, 1706587.
[2]
Y. Liu,; N. O. Weiss,; X. D. Duan,; H. C. Cheng,; Y. Huang,; X. F. Duan, Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[3]
J. B. Cheng,; C. L. Wang,; X. M. Zou,; L. Liao, Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater. 2019, 7, 1800441.
[4]
G. Konstantatos,; M. Badioli,; L. Gaudreau,; J. Osmond,; M. Bernechea,; F. P. G. De Arquer,; F. Gatti,; F. H. L. Koppens, Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363-368.
[5]
T. Yu,; F. Wang,; Y. Xu,; L. L. Ma,; X. D. Pi,; D. R. Yang, Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors. Adv. Mater. 2016, 28, 4912-4919.
[6]
T. Mueller,; F. N. Xia,; P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
[7]
M. Massicotte,; P. Schmidt,; F. Vialla,; K. G. Schädler,; A. Reserbat-Plantey,; K. Watanabe,; T. Taniguchi,; K. J. Tielrooij,; F. H. L. Koppens, Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42-46.
[8]
Q. S. Lv,; F. G. Yan,; X. Wei,; K. Y. Wang, High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 Heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.
[9]
P. Kang,; M. C. Wang,; P. M. Knapp,; S. Nam, Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 2016, 28, 4639-4645.
[10]
T. J. Echtermeyer,; L. Britnell,; P. K. Jasnos,; A. Lombardo,; R. V. Gorbachev,; A. N. Grigorenko,; A. K. Geim,; A. C. Ferrari,; K. S. Novoselov, Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2011, 2, 458.
[11]
P. Ma,; Y. Salamin,; B. Baeuerle,; A. Josten,; W. Heni,; A. Emboras,; J. Leuthold, Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 2019, 6, 154-161.
[12]
D. Paria,; K. Roy,; H. J. Singh,; S. Kumar,; S. Raghavan,; A. Ghosh,; A. Ghosh, Ultrahigh field enhancement and photoresponse in atomically separated arrays of plasmonic dimers. Adv. Mater. 2015, 27, 1751-1758.
[13]
Y. Huang,; L. W. Ma,; M. J. Hou,; J. H. Li,; Z. Xie,; Z. J. Zhang, Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror. Sci. Rep. 2016, 6, 30011.
[14]
S. Mubeen,; S. P. Zhang,; N. Kim,; S. Lee,; S. Krämer,; H. X. Xu,; M. Moskovits, Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 2012, 12, 2088-2094.
[15]
G. Hajisalem,; M. S. Nezami,; R. Gordon, Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett. 2014, 14, 6651-6654.
[16]
Z. Q. Wu,; J. L. Yang,; N. K. Manjunath,; Y. J. Zhang,; S. R. Feng,; Y. H. Lu,; J. H. Wu,; W. W. Zhao,; C. Y. Qiu,; J. F. Li, et al. Gap-mode surface-plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv. Mater. 2018, 30, 1706527.
[17]
B. Sun,; Z. Y. Wang,; Z. Y. Liu,; X. H. Tan,; X. Y. Liu,; T. L. Shi,; J. X. Zhou,; G. L. Liao, Tailoring of silver nanocubes with optimized localized surface plasmon in a gap mode for a flexible MoS2 photodetector. Adv. Funct. Mater. 2019, 29, 1900541.
[18]
K. J. Lee,; S. Kim,; W. Hong,; H. Park,; M. S. Jang,; K. Yu,; S. Y. Choi, Observation of wavelength-dependent quantum plasmon tunneling with varying the thickness of graphene spacer. Sci. Rep. 2019, 9, 1199.
[19]
J. Mertens,; A. L. Eiden,; D. O. Sigle,; F. M. Huang,; A. Lombardo,; Z. P. Sun,; R. S. Sundaram,; A. Colli,; C. Tserkezis,; J. Aizpurua, et al. Controlling subnanometer gaps in plasmonic dimers using graphene. Nano Lett. 2013, 13, 5033-5038.
[20]
K. J. Lee,; D. Kim,; B. C. Jang,; D. J. Kim,; H. Park,; D. Y. Jung,; W. Hong,; T. K. Kim,; Y. K. Choi,; S. Y. Choi, Multilayer graphene with a rippled structure as a spacer for improving plasmonic coupling. Adv. Funct. Mater. 2016, 26, 5093-5101.
[21]
X. H. Li,; W. C. H. Choy,; X. G. Ren,; D. Zhang,; H. F. Lu, Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system. Adv. Funct. Mater. 2014, 24, 3114-3122.
[22]
K. J. Lee,; K. Kwon,; S. Kim,; W. Hong,; J. Park,; K. Yu,; S. Y. Choi, Gap-mode plasmon-induced photovoltaic effect in a vertical multilayer graphene homojunction. Adv. Opt. Mater. 2020, 8, 1901519.
[23]
T. Roy,; M. Tosun,; J. S. Kang,; A. B. Sachid,; S. B. Desai,; M. Hettick,; C. C. Hu,; A. Javey, Field-effect transistors built from all two-dimensional material components. ACS Nano 2014, 8, 6259-6264.
[24]
S. Y. Yang,; J. G. Oh,; D. Y. Jung,; H. Choi,; C. H. Yu,; J. Shin,; C. G. Choi,; B. J. Cho,; S. Y. Choi, Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom. Small 2015, 11, 175-181.
[25]
M. M. Furchi,; A. Pospischil,; F. Libisch,; J. Burgdörfer,; T. Mueller, Photovoltaic effect in an electrically tunable van der waals heterojunction. Nano Lett. 2014, 14, 4785-4791.
[26]
P. Tonndorf,; R. Schmidt,; P. Böttger,; X. Zhang,; J. Börner,; A. Liebig,; M. Albrecht,; C. Kloc,; O. Gordan,; D. R. T. Zahn, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908-4916.
[27]
J. J. Chen,; Q. S. Wang,; J. Meng,; X. X. Ke,; G. Van Tendeloo,; Y. Q. Bie,; J. K. Liu,; K. H. Liu,; Z. M. Liao,; D. Sun, et al. Photovoltaic effect and evidence of carrier multiplication in graphene vertical homojunctions with asymmetrical metal contacts. ACS Nano 2015, 9, 8851-8858.
[28]
C. H. Lee,; G. H. Lee,; A. M. Van Der Zande,; W. C. Chen,; Y. L. Li,; M. Y. Han,; X. Cui,; G. Arefe,; C. Nuckolls,; T. F. Heinz, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
[29]
H. S. Lee,; J. Ahn,; W. Shim,; S. Im,; D. K. Hwang, 2D WSe2/MoS2 van der Waals heterojunction photodiode for visible-near infrared broadband detection. Appl. Phys. Lett. 2018, 113, 163102.
Nano Research
Pages 1305-1310
Cite this article:
Lee KJ, Park C, Jin HJ, et al. Atomically thin heterostructure with gap-mode plasmon for overcoming trade-off between photoresponsivity and response time. Nano Research, 2021, 14(5): 1305-1310. https://doi.org/10.1007/s12274-020-3154-5
Topics:

807

Views

5

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 28 July 2020
Revised: 07 September 2020
Accepted: 30 September 2020
Published: 29 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return