Journal Home > Volume 14 , Issue 4

The integration of strong near-infrared (NIR) emission, rapid lysosome escape, fast cellular excretion, and efficient total body clearance is highly desired for nanoparticles (NPs) to achieve synergistic functions in both molecular imaging and delivery. Herein, using a well-designed cyclopeptide (CP) that can spontaneously assemble into controllable nanofibers as template, a facile strategy is reported for in situ self-assembly of NIR-emitting gold NPs (AuNPs) into ordered and well-controlled one-dimensional (1D) nanostructures (AuNPs@CP) with greatly enhanced NIR emission (~ 6 fold). Comparing with the unassembled AuNPs, the AuNPs@CP are observed to enter living cells through endocytosis, escape from lysosome rapidly, and excrete the cell fast, which shows high gene transfection efficiencies in construction of cell line with ~ 7.5-fold overexpression of p53 protein. Furthermore, the AuNPs@CP exhibit high in vivo diffusibility and total body clearance efficiency with minimized healthy organ retention, which are also demonstrated to be good nanovectors for plasmid complementary deoxyribonucleic acid 3.1 (pcDNA3.1)(+)-internal ribosome entry site (IRES)-green fluorescent protein (GFP)-p53 plasmid with efficient p53 gene over-expression in tumor site. This facile in situ strategy in fabricating highly luminescent 1D nanostructures provides a promising approach toward future translatable multifunctional nanostructures for delivering, tracking, and therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ self-assembly of near-infrared-emitting gold nanoparticles into body-clearable 1D nanostructures with rapid lysosome escape and fast cellular excretion

Show Author's information Kui HeJiayi ZhuLingshan GongYue TanHuarui ChenHuarun LiangBaihao HuangJinbin Liu( )
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

Abstract

The integration of strong near-infrared (NIR) emission, rapid lysosome escape, fast cellular excretion, and efficient total body clearance is highly desired for nanoparticles (NPs) to achieve synergistic functions in both molecular imaging and delivery. Herein, using a well-designed cyclopeptide (CP) that can spontaneously assemble into controllable nanofibers as template, a facile strategy is reported for in situ self-assembly of NIR-emitting gold NPs (AuNPs) into ordered and well-controlled one-dimensional (1D) nanostructures (AuNPs@CP) with greatly enhanced NIR emission (~ 6 fold). Comparing with the unassembled AuNPs, the AuNPs@CP are observed to enter living cells through endocytosis, escape from lysosome rapidly, and excrete the cell fast, which shows high gene transfection efficiencies in construction of cell line with ~ 7.5-fold overexpression of p53 protein. Furthermore, the AuNPs@CP exhibit high in vivo diffusibility and total body clearance efficiency with minimized healthy organ retention, which are also demonstrated to be good nanovectors for plasmid complementary deoxyribonucleic acid 3.1 (pcDNA3.1)(+)-internal ribosome entry site (IRES)-green fluorescent protein (GFP)-p53 plasmid with efficient p53 gene over-expression in tumor site. This facile in situ strategy in fabricating highly luminescent 1D nanostructures provides a promising approach toward future translatable multifunctional nanostructures for delivering, tracking, and therapy.

Keywords: self-assembly, gene delivery, luminescent gold nanoparticle, intracellular imaging, body clearance

References(46)

[1]
S. E. Crawford,; M. J. Hartmann,; J. E. Millstone, Surface chemistry- mediated near-infrared emission of small coinage metal nanoparticles. Acc. Chem. Res. 2019, 52, 695-703.
[2]
Z. N. Wu,; Y. H. Du,; J. L. Liu,; Q. F. Yao,; T. K. Chen,; Y. T. Cao,; H. Zhang,; J. P. Xie, Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem., Int. Ed. 2019, 58, 8139-8144.
[3]
L. S. Gong,; Y. Chen,; K. He,; J. B. Liu, Surface coverage-regulated cellular interaction of ultrasmall luminescent gold nanoparticles. ACS Nano 2019, 13, 1893-1899.
[4]
K. Y. Zheng,; M. I. Setyawati,; D. T. Leong,; J. P. Xie, Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800-2808.
[5]
M. X. Yu,; J. Xu,; J. Zheng, Renal clearable luminescent gold nanoparticles: From the bench to the clinic. Angew. Chem., Int. Ed. 2019, 58, 4112-4128.
[6]
L. Li,; Z. Yang,; W. P. Fan,; L. C. He,; C. Cui,; J. H. Zou,; W. Tang,; O. Jacobson,; Z. T. Wang,; G. Niu, et al. In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv. Funct. Mater. 2020, 30, 1907716.
[7]
L. W. Liao,; S. L. Zhuang,; P. Wang,; Y. N. Xu,; N. Yan,; H. W. Dong,; C. M. Wang,; Y. Zhao,; N. Xia,; J. Li, et al. Quasi-dual-packed- kerneled Au49(2,4-DMBT)27 nanoclusters and the influence of kernel packing on the electrochemical gap. Angew. Chem., Int. Ed. 2017, 56, 12644-12648.
[8]
D. Y. Chen,; Z. T. Luo,; N. J. Li,; J. Y. Lee,; J. P. Xie,; J. M. Lu, Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Adv. Funct. Mater. 2013, 23, 4324-4331.
[9]
X. Y. Jiang,; B. J. Du,; J. Zheng, Glutathione-mediated biotransformation in the liver modulates nanoparticle transport. Nat. Nanotechnol. 2019, 14, 874-882.
[10]
Y. F. Lei,; L. X. Tang,; Y. Z. Y. Xie,; Y. L. Xianyu,; L. M. Zhang,; P. Wang,; Y. Hamada,; K. Jiang,; W. F. Zheng,; X. Y. Jiang, Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat. Commun. 2017, 8, 15130.
[11]
Y. Q. Sun,; D. D. Wang,; Y. Q. Zhao,; T. X. Zhao,; H. C. Sun,; X. W. Li,; C. X. Wang,; B. Yang,; Q. Lin, Polycation-functionalized gold nanodots with tunable near-infrared fluorescence for simultaneous gene delivery and cell imaging. Nano Res. 2018, 11, 2392-2404.
[12]
Q. Z. Li,; Y. T. Pan,; T. K. Chen,; Y. X. Du,; H. H. Ge,; B. C. Zhang,; J. P. Xie,; H. Z. Yu,; M. Z. Zhu, Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale 2018, 10, 10166-10172.
[13]
A. Yahia-Ammar,; D. Sierra,; F. Mérola,; N. Hildebrandt,; X. Le Guével, Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 2016, 10, 2591-2599.
[14]
J. Gilleron,; W. Querbes,; A. Zeigerer,; A. Borodovsky,; G. Marsico,; U. Schubert,; K. Manygoats,; S. Seifert,; C. Andree,; M. Stöter, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013, 31, 638-646.
[15]
P. F. Wang,; M. A. Rahman,; Z. X. Zhao,; K. Weiss,; C. Zhang,; Z. J. Chen,; S. J. Hurwitz,; Z. G. Chen,; D. M. Shin,; Y. G. Ke, Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc. 2018, 140, 2478-2484.
[16]
G. B. Qi,; Y. J. Gao,; L. Wang,; H. Wang, Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater. 2018, 30, 1703444.
[17]
K. Sato,; M. P. Hendricks,; L. C. Palmer,; S. I. Stupp, Peptide supramolecular materials for therapeutics. Chem. Soc. Rev. 2018, 47, 7539-7551.
[18]
M. Li,; M. Ehlers,; S. Schlesiger,; E. Zellermann,; S. K. Knauer,; C. Schmuck, Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection. Angew. Chem., Int. Ed. 2016, 55, 598-601.
[19]
W. S. Zhang,; D. M. Lin,; H. X. Wang,; J. F. Li,; G. U. Nienhaus,; Z. Q. Su,; G. Wei,; L. Shang, Supramolecular self-assembly bioinspired synthesis of luminescent gold nanocluster-embedded peptide nanofibers for temperature sensing and cellular imaging. Bioconjugate Chem. 2017, 28, 2224-2229.
[20]
Z. Fan,; L. M. Sun,; Y. J. Huang,; Y. Z. Wang,; M. J. Zhang, Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol. 2016, 11, 388-394.
[21]
Y. Wang,; Y. X. Lin,; Z. Y. Qiao,; H. W. An,; S. L. Qiao,; L. Wang,; R. P. Y. J. Rajapaksha,; H. Wang, Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo. Adv. Mater. 2015, 27, 2627-2634.
[22]
Z. Fan,; Y. Chang,; C. C. Cui,; L. M. Sun,; D. H. Wang,; Z. Pan,; M. J. Zhang, Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat. Commun. 2018, 9, 2605.
[23]
R. Pugliese,; A. Marchini,; G. A. A. Saracino,; R. N. Zuckermann,; F. Gelain, Cross-linked self-assembling peptide scaffolds. Nano Res. 2018, 11, 586-602.
[24]
J. B. Liu,; M. X. Yu,; C. Zhou,; S. Y. Yang,; X. H. Ning,; J. Zheng, Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978-4981.
[25]
J. B. Liu,; P. N. Duchesne,; M. X. Yu,; X. Y. Jiang,; X. H. Ning,; R. D. Vinluan III,; P. Zhang,; J. Zheng, Luminescent gold nanoparticles with size-independent emission. Angew. Chem., Int. Ed. 2016, 55, 8894-8898.
[26]
M. R. Ghadiri,; J. R. Granja,; R. A. Milligan,; D. E. McRee,; N. Khazanovich, Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993, 366, 324-327.
[27]
A. Lamas,; A. Guerra,; M. Amorín,; J. R. Granja, New self-assembling peptide nanotubes of large diameter using δ-amino acids. Chem. Sci. 2018, 9, 8228-8233.
[28]
T. Y. Zhou,; J. Y. Zhu,; L. S. Gong,; L. T. Nong,; J. B. Liu, Amphiphilic block copolymer-guided in situ fabrication of stable and highly controlled luminescent copper nanoassemblies. J. Am. Chem. Soc. 2019, 141, 2852-2856.
[29]
D. S. Ling,; M. J. Hackett,; T. Hyeon, Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 2014, 9, 457-477.
[30]
B. D. Chithrani,; W. C. W. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542-1550.
[31]
J. X. Lu,; J. Wang,; D. S. Ling, Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small 2018, 14, 1702037.
[32]
X. A. Wu,; C. H. J. Choi,; C. Zhang,; L. L. Hao,; C. A. Mirkin, Intracellular fate of spherical nucleic acid nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7726-7733.
[33]
G. Vindigni,; S. Raniolo,; A. Ottaviani,; M. Falconi,; O. Franch,; B. R. Knudsen,; A. Desideri,; S. Biocca, Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells. ACS Nano 2016, 10, 5971-5979.
[34]
V. Zinchuk,; O. Zinchuk,; T. Okada, Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: Pushing pixels to explore biological phenomena. Acta Histochem. Cytochem. 2007, 40, 101-111.
[35]
J. Y. Zhu,; K. He,; Z. Y. Dai,; L. S. Gong,; T. Y. Zhou,; H. R. Liang,; J. B. Liu, Self-assembly of luminescent gold nanoparticles with sensitive pH-stimulated structure transformation and emission response toward lysosome escape and intracellular imaging. Anal. Chem. 2019, 91, 8237-8243.
[36]
T. G. Iversen,; T. Skotland,; K. Sandvig, Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011, 6, 176-185.
[37]
J. Huang,; C. Zong,; H. Shen,; M. Liu,; B. Chen,; B. Ren,; Z. J. Zhang, Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Small 2012, 8, 2577-2584.
[38]
M. Akishiba,; T. Takeuchi,; Y. Kawaguchi,; K. Sakamoto,; H. H. Yu,; I. Nakase,; T. Takatani-Nakase,; F. Madani,; A. Gräslund,; S. Futaki, Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 2017, 9, 751-761.
[39]
S. E. A. Gratton,; P. A. Ropp,; P. D. Pohlhaus,; J. C. Luft,; V. J. Madden,; M. E. Napier,; J. M. DeSimone, The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613-11618.
[40]
P. Jana,; K. Samanta,; S. Bäcker,; E. Zellermann,; S. Knauer,; C. Schmuck, Efficient gene transfection through inhibition of β-sheet (amyloid fiber) formation of a short amphiphilic peptide by gold nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 8083-8088.
[41]
Y. H. Liu,; X. N. Zhang,; C. Han,; G. H. Wan,; X. X. Huang,; C. Ivan,; D. H. Jiang,; C. Rodriguez-Aguayo,; G. Lopez-Berestein,; P. H. Rao, et al. TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature 2015, 520, 697-701.
[42]
V. J. N. Bykov,; S. E. Eriksson,; J. Bianchi,; K. G. Wiman, Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 2017, 18, 89-102.
[43]
U. Capasso Palmiero,; J. C. Kaczmarek,; O. S. Fenton,; D. G. Anderson, Poly(β-amino ester)-co-poly(caprolactone) terpolymers as nonviral vectors for mRNA delivery in vitro and in vivo. Adv. Healthcare Mater. 2018, 7, 1800249.
[44]
M. Takagi,; M. J. Absalon,; K. G. McLure,; M. B. Kastan, Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 2005, 123, 49-63.
[45]
M. H. G. Kubbutat,; S. N. Jones,; K. H. Vousden, Regulation of p53 stability by Mdm2. Nature 1997, 387, 299-303.
[46]
Q. Chen,; C. Wang,; X. D. Zhang,; G. J. Chen,; Q. Y. Hu,; H. J. Li,; J. Q. Wang,; D. Wen,; Y. Q. Zhang,; Y. F. Lu, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89-97.
File
12274_2020_3153_MOESM1_ESM.pdf (5.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 July 2020
Revised: 29 September 2020
Accepted: 01 October 2020
Published: 06 November 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21573078 and 22022403), Guangdong Natural Science Funds for Distinguished Young Scholars (No. 2016A030306024), Guangzhou Science and Technology Project (No. 201904010055), and Fundamental Research Funds for the Central Universities.

Return