AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (837.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Mechanosynthesis of polymer-stabilized lead bromide perovskites: Insight into the formation and phase conversion of nanoparticles

Guocan Jiang1Onur Erdem2René Hübner4Maximilian Georgi1Wei Wei1Xuelin Fan1Jin Wang5Hilmi Volkan Demir2,3Nikolai Gaponik1( )
Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
Department of Physics, Department of Electrical and Electronics Engineering, and UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Mathematical and Physical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
Show Author Information

Graphical Abstract

Abstract

The application of polymers to replace oleylamine (OLA) and oleic acid (OA) as ligands for perovskite nanocrystals is an effective strategy to improve their stability and durability especially for the solution-based processing. Herein, we report a mechanosynthesis of lead bromide perovskite nanoparticles (NPs) stabilized by partially hydrolyzed poly(methyl methacrylate) (h-PMMA) and high- molecular-weight highly-branched poly(ethylenimine) (PEI-25K). The as-synthesized NP solutions exhibited green emission centered at 516 nm, possessing a narrow full-width at half-maximum of 17 nm and as high photoluminescence quantum yield (PL QY) as 85%, while showing excellent durability and resistance to polar solvents, e.g., methanol. The colloids of polymer-stabilized NPs were directly processable to form stable and strongly-emitting thin films and solids, making them attractive as gain media. Furthermore, the roles of h-PMMA and PEI-25K in the grinding process were studied in depth. The h-PMMA can form micelles in the grinding solvent of dichloromethane to act as size-regulating templates for the growth of NPs. The PEI-25K with large amounts of amino groups induced significant enrichment of PbBr2 in the reaction mixture, which in turn caused the formation of CsPb2Br5-mPbBr2 and CsPbBr3-Cs4PbBr6-nCsBr NPs. The presence of CsPbBr3-Cs4PbBr6-nCsBr NPs was responsible for the high PL QY, as the Cs4PbBr6 phase with a wide energy bandgap can passivate the surface defects of the CsPbBr3 phase. This work describes a direct and facile mechanosynthesis of polymer-coordinated perovskite NPs and promotes in-depth understanding of the formation and phase conversion for perovskite NPs in the grinding process.

Electronic Supplementary Material

Download File(s)
12274_2020_3152_MOESM1_ESM.pdf (4.1 MB)

References

[1]
M. V. Kovalenko,; L. Protesescu,; M. I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745-750.
[2]
F. Yan,; S. T. Tan,; X. Li,; H. V. Demir, Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications. Small 2019, 15, 1902079.
[3]
K. B. Lin,; J. Xing,; L. N. Quan,; F. P. G. de Arquer,; X. W. Gong,; J. X. Lu,; L. Q. Xie,; W. J. Zhao,; D. Zhang,; C. Z. Yan, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245-248.
[4]
F. Yan,; J. Xing,; G. C. Xing,; L. Quan,; S. T. Tan,; J. X. Zhao,; R. Su,; L. L. Zhang,; S. Chen,; Y. W. Zhao, et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Lett. 2018, 18, 3157-3164.
[5]
Q. C. Zhou,; Z. L. Bai,; W. G. Lu,; Y. T. Wang,; B. S. Zou,; H. Z. Zhong, In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163-9168.
[6]
X. M. Chen,; F. Zhang,; Y. Ge,; L. F. Shi,; S. Huang,; J. L. Tang,; Z. Lv,; L. Zhang,; B. S. Zou,; H. Z. Zhong, Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: Nonstoichiometry induced transformation and light-emitting applications. Adv. Funct. Mater. 2018, 28, 1706567.
[7]
Y. Q. Xu,; Q. Chen,; C. F. Zhang,; R. Wang,; H. Wu,; X. Y. Zhang,; G. C. Xing,; W. W. Yu,; X. Y. Wang,; Y. Zhang, et al. Two-photon- pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 2016, 138, 3761-3768.
[8]
Y. Wang,; D. J. Yu,; Z. Wang,; X. M. Li,; X. X. Chen,; V. Nalla,; H. B. Zeng,; H. D. Sun, Solution-grown CsPbBr3/Cs4PbBr6 perovskite nanocomposites: Toward temperature-insensitive optical gain. Small 2017, 13, 1701587.
[9]
Q. S. Chen,; J. Wu,; X. Y. Ou,; B. L. Huang,; J. Almutlaq,; A. A. Zhumekenov,; X. W. Guan,; S. Y. Han,; L. L. Liang,; Z. G. Yi, et al. All- inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88-93.
[10]
Y. H. Zhang,; R. J. Sun,; X. Y. Ou,; K. F. Fu,; Q. S. Chen,; Y. C. Ding,; L. J. Xu,; L. M. Liu,; Y. Han,; A. V. Malko, et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 2019, 13, 2520-2525.
[11]
H. Huang,; M. I. Bodnarchuk,; S. V. Kershaw,; M. V. Kovalenko,; A. L. Rogach, Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071-2083.
[12]
J. Kang,; L. W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489-493.
[13]
Q. A. Akkerman,; G. Rainò,; M. V. Kovalenko,; L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394-405.
[14]
F. Krieg,; S. T. Ochsenbein,; S. Yakunin,; S. Ten Brinck,; P. Aellen,; A. Suess,; B. Clerc,; D. Guggisberg,; O. Nazarenko,; Y. Shynkarenko, et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 2018, 3, 641-646.
[15]
D. D. Yang,; X. M. Li,; W. H. Zhou,; S. L. Zhang,; C. F. Meng,; Y. Wu,; Y. Wang,; H. B. Zeng, CsPbBr3 quantum dots 2.0: Benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 2019, 31, 1900767.
[16]
W. L. Zheng,; Z. C. Li,; C. Y. Zhang,; B. Wang,; Q. G. Zhang,; Q. Wan,; L. Kong,; L. Li, Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 2019, 12, 1461-1465.
[17]
Y. Li,; X. Y. Wang,; W. N. Xue,; W. Wang,; W. Zhu,; L. J. Zhao, Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785-789.
[18]
J. Pan,; Y. Q. Shang,; J. Yin,; M. De Bastiani,; W. Peng,; I. Dursun,; L. Sinatra,; A. M. El-Zohry,; M. N. Hedhili,; A. H. Emwas, et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562-565.
[19]
C. Lu,; H. Li,; K. Kolodziejski,; C. C. Dun,; W. X. Huang,; D. Carroll,; S. M. Geyer, Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762-768.
[20]
W. N. Xue,; X. Y. Wang,; W. Wang,; F. F. He,; W. Zhu,; Y. Li, Aluminum distearate-modified CsPbX3 (X = I, Br, or Cl/Br) nanocrystals with enhanced optical and structural stabilities. CCS Chem. 2020, 2, 13-23.
[21]
W. T. Song,; Y. M. Wang,; B. Wang,; Y. F. Yao,; W. G. Wang,; J. H. Wu,; Q. Shen,; W. J. Luo,; Z. G. Zou, Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Res. 2020, 13, 795-801.
[22]
S. Yuan,; D. Q. Chen,; X. Y. Li,; J. S. Zhong,; X. H. Xu, In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918-18926.
[23]
A. Z. Pan,; J. L. Wang,; M. J. Jurow,; M. J. Jia,; Y. Liu,; Y. S. Wu,; Y. F. Zhang,; L. He,; Y. Liu, General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals. Chem. Mater. 2018, 30, 2771-2780.
[24]
Z. C. Li,; L. Kong,; S. Q. Huang,; L. Li, Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew. Chem., Int. Ed. 2017, 56, 8134-8138.
[25]
H. Huang,; B. K. Chen,; Z. G. Wang,; T. F. Hung,; A. S. Susha,; H. Z. Zhong,; A. L. Rogach, Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 2016, 7, 5699-5703.
[26]
S. N. Raja,; Y. Bekenstein,; M. A. Koc,; S. Fischer,; D. D. Zhang,; L. W. Lin,; R. O. Ritchie,; P. D. Yang,; A. P. Alivisatos, Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523-35533.
[27]
C. de Weerd,; J. H. Lin,; L. Gomez,; Y. Fujiwara,; K. Suenaga,; T. Gregorkiewicz, Hybridization of single nanocrystals of Cs4PbBr6 and CsPbBr3. J. Phys. Chem. C 2017, 121, 19490-19496.
[28]
Y. M. Chen,; Y. Zhou,; Q. Zhao,; J. Y. Zhang,; J. P. Ma,; T. T. Xuan,; S. Q. Guo,; Z. J. Yong,; J. Wang,; Y. Kuroiwa, et al. Cs4PbBr6/CsPbBr3 perovskite composites with near-unity luminescence quantum yield: Large-scale synthesis, luminescence and formation mechanism, and white light-emitting diode application. ACS Appl. Mater. Interfaces 2018, 10, 15905-15912.
[29]
C. Jia,; H. Li,; X. W. Meng,; H. B. Li, CsPbX3/Cs4PbX6 core/shell perovskite nanocrystals. Chem. Commun. 2018, 54, 6300-6303.
[30]
B. S. Zhu,; H. Z. Li,; J. Ge,; H. D. Li,; Y. C. Yin,; K. H. Wang,; C. Chen,; J. S. Yao,; Q. Zhang,; H. B. Yao, Room temperature precipitated dual phase CsPbBr3-CsPb2Br5 nanocrystals for stable perovskite light emitting diodes. Nanoscale 2018, 10, 19262-19271.
[31]
M. He,; C. Y. Wang,; J. Z. Li,; J. Wu,; S. W. Zhang,; H. C. Kuo,; L. Y. Shao,; S. C. Zhao,; J. Z. Zhang,; F. Y. Kang, et al. CsPbBr3-Cs4PbBr6 composite nanocrystals for highly efficient pure green light emission. Nanoscale 2019, 11, 22899-22906.
[32]
S. Q. Lou,; Z. Zhou,; T. T. Xuan,; H. L. Li,; J. Jiao,; H. W. Zhang,; R. Gautier,; J. Wang, Chemical transformation of lead halide perovskite into insoluble, less cytotoxic, and brightly luminescent CsPbBr3/CsPb2Br5 composite nanocrystals for cell imaging. ACS Appl. Mater. Interfaces 2019, 11, 24241-24246.
[33]
D. P. Nenon,; K. Pressler,; J. Kang,; B. A. Koscher,; J. H. Olshansky,; W. T. Osowiecki,; M. A. Koc,; L. W. Wang,; A. P. Alivisatos, Design principles for trap-free CsPbX3 nanocrystals: Enumerating and eliminating surface halide vacancies with softer lewis bases. J. Am. Chem. Soc. 2018, 140, 17760-17772.
[34]
Q. A. Akkerman,; A. L. Abdelhady,; L. Manna, Zero-dimensional cesium lead halides: History, properties, and challenges. J. Phys. Chem. Lett. 2018, 9, 2326-2337.
[35]
L. L. Wang,; H. Liu,; Y. H. Zhang,; O. F. Mohammed, Photoluminescence origin of zero-dimensional Cs4PbBr6 perovskite. ACS Energy Lett. 2020, 5, 87-99.
[36]
G. C. Jiang,; C. Guhrenz,; A. Kirch,; L. Sonntag,; C. Bauer,; X. L. Fan,; J. Wang,; S. Reineke,; N. Gaponik,; A. Eychmüller, Highly luminescent and water-resistant CsPbBr3-CsPb2Br5 perovskite nanocrystals coordinated with partially hydrolyzed poly(methyl methacrylate) and polyethylenimine. ACS Nano 2019, 13, 10386-10396.
[37]
R. A. Kerner,; T. H. Schloemer,; P. Schulz,; J. J. Berry,; J. Schwartz,; A. Sellinger,; B. P. Rand, Amine additive reactions induced by the soft lewis acidity of Pb2+ in halide perovskites. Part I: Evidence for Pb-alkylamide formation. J. Mater. Chem. C 2019, 7, 5251-5259.
[38]
F. Palazon,; Y. El Ajjouri,; P. Sebastia-Luna,; S. Lauciello,; L. Manna,; H. J. Bolink, Mechanochemical synthesis of inorganic halide perovskites: Evolution of phase-purity, morphology, and photoluminescence. J. Mater. Chem. C 2019, 7, 11406-11410.
[39]
A. Jana,; M. Mittal,; A. Singla,; S. Sapra, Solvent-free, mechanochemical syntheses of bulk trihalide perovskites and their nanoparticles. Chem. Commun. 2017, 53, 3046-3049.
[40]
Y. J. Liu,; Z. W. Wang,; S. Liang,; Z. L. Li,; M. Y. Zhang,; H. M. Li,; Z. Q. Lin, Polar organic solvent-tolerant perovskite nanocrystals permanently ligated with polymer hairs via star-like molecular bottlebrush trilobe nanoreactors. Nano Lett. 2019, 19, 9019-9028.
[41]
Y. J. Yoon,; Y. J. Chang,; S. G. Zhang,; M. Zhang,; S. Pan,; Y. J. He,; C. H. Lin,; S. T. Yu,; Y. H. Chen,; Z. W. Wang, et al. Enabling tailorable optical properties and markedly enhanced stability of perovskite quantum dots by permanently ligating with polymer hairs. Adv. Mater. 2019, 31, 1901602.
[42]
T. Udayabhaskararao,; M. Kazes,; L. Houben,; H. Lin,; D. Oron, Nucleation, growth, and structural transformations of perovskite nanocrystals. Chem. Mater. 2017, 29, 1302-1308.
[43]
R. A. Kerner,; T. H. Schloemer,; P. Schulz,; J. J. Berry,; J. Schwartz,; A. Sellinger,; B. P. Rand, Amine additive reactions induced by the soft lewis acidity of Pb2+ in halide perovskites. Part II: Impacts of amido Pb impurities in methylammonium lead triiodide thin films. J. Mater. Chem. C 2019, 7, 5244-5250.
[44]
Y. L. Guo,; K. Shoyama,; W. Sato,; E. Nakamura, Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells. Adv. Energy Mater. 2016, 6, 1502317.
[45]
N. Kurahashi,; H. Mizuno,; F. Sasaki,; H. Yanagi, Whispering gallery mode lasing from CH3NH3PbBr3/PEO composites grown in a microcapillary. J. Phys. Chem. C 2020, 124, 3242-3249.
[46]
Q. A. Akkerman,; V. D'Innocenzo,; S. Accornero,; A. Scarpellini,; A. Petrozza,; M. Prato,; L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276-10281.
[47]
C. Guhrenz,; A. Benad,; C. Ziegler,; D. Haubold,; N. Gaponik,; A. Eychmüller, Solid-state anion exchange reactions for color tuning of CsPbX3 Perovskite nanocrystals. Chem. Mater. 2016, 28, 9033-9040.
[48]
H. Liu,; M. Siron,; M. Y. Gao,; D. Lu,; Y. Bekenstein,; D. D. Zhang,; L. T. Dou,; A. P. Alivisatos,; P. D. Yang, Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Res. 2020, 13, 1453-1458.
[49]
K. L. Shaklee,; R. F. Leheny, Direct determination of optical gain in semiconductor crystals. Appl. Phys. Lett. 1971, 18, 475-477.
[50]
K. L. Shaklee,; R. E. Nahory,; R. F. Leheny, Optical gain in semiconductors. J. Lumin. 1973, 7, 284-309.
[51]
Q. Wei,; X. J. Li,; C. Liang,; Z. P. Zhang,; J. Guo,; G. Hong,; G. C. Xing,; W. Huang, Recent progress in metal halide perovskite micro- and nanolasers. Adv. Opt. Mater. 2019, 7, 1900080.
[52]
L. Protesescu,; S. Yakunin,; M. I. Bodnarchuk,; F. Krieg,; R. Caputo,; C. H. Hendon,; R. X. Yang,; A. Walsh,; M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[53]
Z. J. Chen,; Y. G. Hu,; J. Wang,; Q. Shen,; Y. H. Zhang,; C. Ding,; Y. Bai,; G. C. Jiang,; Z. Q. Li,; N. Gaponik, Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes. Chem. Mater. 2020, 32, 1517-1525.
Nano Research
Pages 1078-1086
Cite this article:
Jiang G, Erdem O, Hübner R, et al. Mechanosynthesis of polymer-stabilized lead bromide perovskites: Insight into the formation and phase conversion of nanoparticles. Nano Research, 2021, 14(4): 1078-1086. https://doi.org/10.1007/s12274-020-3152-7
Topics:

938

Views

28

Downloads

8

Crossref

N/A

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 05 July 2020
Revised: 30 September 2020
Accepted: 02 October 2020
Published: 02 November 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return