[1]
M. S. Zhu,; Z. C. Sun,; M. Fujitsuka,; T. Majima, Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew. Chem., Int. Ed. 2018, 57, 2160-2164.
[2]
Y. Zhang,; L. L. Wu,; X. Y. Zhao,; Y. N. Zhao,; H. Q. Tan,; X. Zhao,; Y. Y. Ma,; Z. Zhao,; S. Y. Song,; Y. H. Wang, et al. Leaf-mosaic-inspired vine-like graphitic carbon nitride showing high light absorption and efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801139.
[3]
L. Hui,; Y. R. Xue,; B. L. Huang,; H. D. Yu,; C. Zhang,; D. Y. Zhang,; D. Z. Jia,; Y. J. Zhao,; Y. J. Li,; H. B. Liu, et al. Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nat. Commun. 2018, 9, 5309.
[4]
J. M. Wang,; J. Luo,; D. Liu,; S. T. Chen,; T. Y. Peng, One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Appl. Catal. B Environ. 2019, 241, 130-140.
[5]
Y. Tsuji,; K. Yamamoto,; K. Yamauchi,; K. Sakai, Near-infrared light-driven hydrogen evolution from water using a polypyridyl triruthenium photosensitizer. Angew. Chem., Int. Ed. 2018, 57, 208-212.
[6]
J. Q. Xu,; X. D. Li,; Z. Y. Ju,; Y. F. Sun,; X. C. Jiao,; J. Wu,; C. M. Wang,; W. S. Yan,; H. X. Ju,; J. F. Zhu, et al. Visible-light-driven overall water splitting boosted by tetrahedrally coordinated blende cobalt(II) oxide atomic layers. Angew. Chem., Int. Ed. 2019, 58, 3032-3036.
[7]
C. W. Dong,; S. Y. Lu,; S. Y. Yao,; R. Ge,; Z. D. Wang,; Z. Wang,; P. F. An,; Y. Liu,; B. Yang,; H. Zhang, Colloidal synthesis of ultrathin monoclinic BiVO4 nanosheets for Z-scheme overall water splitting under visible light. ACS Catal. 2018, 8, 8649-8658.
[8]
X. H. Zhang,; J. Xiao,; M. Hou,; Y. G. Xiang,; H. Chen, Robust visible/near-infrared light driven hydrogen generation over Z-scheme conjugated polymer/CdS hybrid. Appl. Catal. B Environ. 2018, 224, 871-876.
[9]
Q. Wang,; T. Hisatomi,; Y. Suzuk,; Z. H. Pan,; J. Seo,; M. Katayama,; T. Minegishi,; H. Nishiyama,; T. Takata,; K. Seki, et al. Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 2017, 139, 1675-1683.
[10]
Q. Zhang,; W. J. Wang,; J. Q. Zhang,; X. H. Zhu,; Q. Q. Zhang,; Y. J. Zhang,; Z. M. Ren,; S. S. Song,; J. M. Wang,; Z. H. Ying, et al. Highly efficient photocatalytic hydrogen evolution by ReS2 via a two-electron catalytic reaction. Adv. Mater. 2018, 30, 1707123.
[11]
X. Hai,; W. Zhou,; K. Chang,; H. Pang,; H. M. Liu,; L. Shi,; F. Ichihara,; J. H. Ye, Engineering the crystallinity of MoS2 monolayers for highly efficient solar hydrogen production. J. Mater. Chem. A 2017, 5, 8591-8598.
[12]
S. Ida,; N. Kim,; E. Ertekin,; S. Takenaka,; T. Ishihara, Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J. Am. Chem. Soc. 2015, 137, 239-244.
[13]
M. Xiao,; B. Luo,; M. Q. Lyu,; S. C. Wang,; L. Z. Wang, Single-crystalline nanomesh tantalum nitride photocatalyst with improved hydrogen-evolving performance. Adv. Energy Mater. 2018, 8, 1701605.
[14]
F. Ye,; H. F. Li,; H. T. Yu,; S. Chen,; X. Quan, Constructing BiVO4-Au@CdS photocatalyst with energic charge-carrier-separation capacity derived from facet induction and Z-scheme bridge for degradation of organic pollutants. Appl. Catal. B Environ. 2018, 227, 258-265.
[15]
Z. F. Jiang,; W. M. Wan,; H. M Li,; S. Q. Yuan,; H. J. Zhao,; P. K. Wong, A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 2018, 11, 1706108.
[16]
W. K. Jo,; T. S. Natarajan, Facile synthesis of novel redox-mediator-free direct z-scheme CaIn2S4 marigold-flower-like/TiO2 photocatalysts with superior photocatalytic efficiency. ACS Appl. Mater. Interfaces 2015, 7, 17138-17154.
[17]
A. Fateeva,; P. A. Chater,; C. P. Ireland,; A. A. Tahir,; Y. Z. Khimyak,; P. V. Wiper,; J. R. Darwent,; M. J. Rosseinsky, A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem., Int. Ed. 2012, 51, 7440-7444.
[18]
J. M. Wang,; Y. Zheng,; T. Y. Peng,; J. Zhang,; R. J. Li, Asymmetric zinc porphyrin derivative-sensitized graphitic carbon nitride for efficient visible-light-driven H2 production. ACS Sustain. Chem. Eng. 2017, 5, 7549-7556.
[19]
K. Li,; L. Lin,; T. Y. Peng,; Y. Y. Guo,; R. J. Li,; J. Zhang, Asymmetric zinc porphyrin-sensitized nanosized TiO2 for efficient visible-light-driven CO2 photoreduction to CO/CH4. Chem. Commun. 2015, 51, 12443-12446.
[20]
J. M. Wang,; D. Liu,; Q. W. Liu,; T. Y. Peng,; R. J. Li,; S. Y. Zhou, Effects of the central metal ions on the photosensitization of metalloporphyrins over carbon nitride for visible-light-responsive H2 production. Appl. Surf. Sci. 2019, 464, 255-261.
[21]
Y. Zheng,; J. M. Wang,; J. Zhang,; T. Y. Peng,; R. J. Li, Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H2 production activity. Dalton Trans. 2017, 46, 8219-8228.
[22]
X. H. Zhang,; T. Y. Peng,; L. J. Yu,; R. J. Li,; Q. Q. Li,; Z. Li, visible/near-infrared-light-induced h2 production over g-C3N4 co-sensitized by organic dye and zinc phthalocyanine derivative. ACS Catal. 2015, 5, 504-510.
[23]
X. H. Zhang,; T. Y. Peng,; S. S. Song, Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J. Mater. Chem. A 2016, 4, 2365-2402.
[24]
H. Hagiwara,; M. Nagatomo,; C. Seto,; S. Ida,; T. Ishiahara, Dye modification effects on TaON for photocatalytic hydrogen production from water. Catalysts 2013, 3, 614-624.
[25]
H. Hagiwara,; T. Inoue,; K. Kaneko,; T. Ishihara, Charge-transfer mechanism in Pt/KTa(Zr)O3 photocatalysts modified with porphyrinoids for water splitting. Chem.—Eur. J. 2009, 15, 12862-12870.
[26]
H. Hagiwara,; M. Nagatomo,; C. Seto,; S. Ida,; T. Ishihara, Dye-modification effects on water splitting activity of GaN: ZnO photocatalyst. J. Photochem. Photobio. A Chem. 2013, 272, 41-48.
[27]
K. Hu,; C. Y. Chen,; Y. Zhu,; G. M. Zeng,; B. B. Huang,; W. Q. Chen,; S. H. Liu,; C. Lei,; B. S. Li,; Y. Yang, Ternary Z-scheme heterojunction of Bi2WO6 with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin (TCPP) for enhanced visible-light photocatalysis. J. Colloid Interf. Sci. 2019, 540, 115-125.
[28]
P. Li,; X. H. Zhang,; C. C. Hou,; Y. Chen,; T. He, Highly efficient visible-light driven solar-fuel production over tetra(4-carboxyphenyl)porphyrin iron(III) chloride using CdS/Bi2S3 heterostructure as photosensitizer. Appl. Catal. B Environ. 2018, 238, 656-663.
[29]
B. S. Nguyen,; Y. K. Xiao,; C. Y. Shih,; V. C. Nguyen,; W. Y. Chou,; H. Teng, Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition. Nanoscale 2018, 10, 10721-10730.
[30]
L. Stobinski,; B. Lesiak,; A. Malolepszy,; M. Mazurkiewicz,; B. Mierzwa,; J. Zemek,; P. Jiricek,; I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145-154.
[31]
R. G. Li,; F. X. Zhang,; D. G. Wang,; J. X. Yang,; M. R. Li,; J. Zhu,; X. Zhou,; H. X. Han,; C. Li, Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.
[32]
Y. S. Fu,; X. Q. Sun,; X. Wang, BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater. Chem. Phys. 2011, 131, 325-330.
[33]
H. S. Kibombo,; C. M. Wua,; R. Peng,; J. Baltrusaitis,; R. T. Koodali, Investigation of the role of platinum oxide for the degradation of phenol under simulated solar irradiation. Appl. Catal. B Environ. 2013, 136-137, 248-259.
[34]
B. Ohtani,; K. Iwai,; S. I Nishimoto,; S. Sato, Role of platinum deposits on titanium(IV) oxide particles: Structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J. Phys. Chem. B 1997, 101, 3349-3359.
[35]
J. Lee,; W. Choi, Photocatalytic reactivity of surface platinized TiO2: Substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 2005, 109, 7399-7406.
[36]
J. F. Liu,; X. T. Yu,; R. F. Du,; C. Q. Zhang,; T. Zhang,; J. Llorca,; J. Arbiol,; Y. Wang,; M. Meyns,; A. Cabot, Chromium phosphide CrP as highly active and stable electrocatalysts for oxygen electroreduction in alkaline media. Appl. Catal. B Environ. 2019, 256, 117846.
[37]
H. L. Tan,; A. Suyanto,; A. T. De Denko,; W. H. Saputera,; R. Amal,; F. E. Osterloh,; Y. H. Ng, Enhancing the photoactivity of faceted BiVO4 via annealing in oxygen-deficient condition. Part. Part. Syst. Charact. 2017, 34, 1600290.
[38]
J. Yin,; Y. X. Li,; F. Lv,; M. Lu,; K. Sun,; W. Wang,; L. Wang,; F. Y. Cheng,; Y. F. Li,; P. X. Xi, et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-Air batteries driven water splitting devices. Adv. Mater. 2017, 29, 1704681.
[39]
S. Bai,; C. Gao,; J. X. Low,; Y. J. Xiong, Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Res. 2019, 12, 2031-2054.
[40]
D. Zu,; H. Y. Wang,; S. Lin,; G. Ou,; H. H. Wei,; S. Q. Sun,; H. Wu, Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment. Nano Res. 2019, 12, 2150-2163.
[41]
S. F. Tian,; S. D. Chen,; X. T. Ren,; Y. Q. Hu,; H. Y. Hu,; J. J. Sun,; F. Bai, An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665-2672.
[42]
X. F. Wang,; P. F. Sun,; H. L. Lu,; K. Tang,; Q. Li,; C. Wang,; Z. Y. Mao,; T. Ali,; C. L. Yan, Aluminum-tailored energy level and morphology of Co3-xAlxO4 porous nanosheets toward highly efficient electrocatalysts for water oxidation. Small 2019, 15, 1804886.
[43]
W. J. Chun,; A. Ishikawa,; H. Fujisawa,; T. Takata,; J. N. Kondo,; M. Hara,; M. Kawai,; Y. Matsumoto,; K. Domen, Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 2003, 107, 1798-1803.
[44]
H. L. Tan,; F. F. Abdi,; Y. H. Ng, Heterogeneous photocatalysts: An overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem. Soc. Rev. 2019, 48, 1255-1271.
[45]
S. C. Wang,; P. Chen,; Y. Bai,; J. H. Yun,; G. Liu,; L. Z. Wang, New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 2018, 30, 1800486.
[46]
C. S. Diercks,; S. Lin,; N. Kornienko,; E. A. Kapustin,; E. M. Nichols,; C. H. Zhu,; Y. B. Zhao,; C. J. Chang,; O. M. Yaghi, Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116-1122.
[47]
P. F. Xia,; B. C. Zhu,; B. Cheng,; J. G. Yu,; J. S. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustainable Chem. Eng. 2018, 6, 965-973.
[48]
A. Iwase,; Y. H. Ng,; Y. Ishiguro,; A. Kudo,; R. Amal, Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 2011, 133, 11054-11057.