Journal Home > Volume 14 , Issue 4

Support materials play a significant role in heterogeneous nanocatalysis. In this work, β-cyclodextrin (β-CD) was used directly as a monomer to construct polymer networks for gold nanoparticles (Au NPs) immobilization. Using the simple nucleophilic substitution reaction, β-CD based polymer networks (β-CDP-N and β-CDP-C) were successfully prepared. Compared to β-CDP-C, the hydroxyl groups and N atoms in β-CDP-N played a synergistic role in immobilizing smaller Au NPs, thus leading to high catalytic activities. Notably, the apparent rate constant (Kapp) value for Au@β-CDP-N in the reduction of 4-nitrophenol to 4-aminophenol is 14.15 × 10−2 s−1, which shows a significant improvement over all previously reported Au NPs with solid supports under similar conditions. Considering the negligible porosity of the β-CDP-N support, we purposed a "capture-catalysis-release" model to explain the high catalytic activity of Au@β-CDP-N. This explanation is supported by the guest-responsive properties of β-CDP-N. Moreover, the Au@β-CDP-N is easily recycled and maintained its high catalytic efficiency after seven successful cycles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities

Show Author's information Yong Zhang1,§( )Bing Hu1,§Xiao-Mei Cao1Liang Luo1Yu Xiong3Zhi-Peng Wang2Xin Hong1San-Yuan Ding2( )
Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, College of Chemistry and Chemical Engineering, Ganzhou 341000, China
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Yong Zhang and Bing Hu contributed equally to this work.

Abstract

Support materials play a significant role in heterogeneous nanocatalysis. In this work, β-cyclodextrin (β-CD) was used directly as a monomer to construct polymer networks for gold nanoparticles (Au NPs) immobilization. Using the simple nucleophilic substitution reaction, β-CD based polymer networks (β-CDP-N and β-CDP-C) were successfully prepared. Compared to β-CDP-C, the hydroxyl groups and N atoms in β-CDP-N played a synergistic role in immobilizing smaller Au NPs, thus leading to high catalytic activities. Notably, the apparent rate constant (Kapp) value for Au@β-CDP-N in the reduction of 4-nitrophenol to 4-aminophenol is 14.15 × 10−2 s−1, which shows a significant improvement over all previously reported Au NPs with solid supports under similar conditions. Considering the negligible porosity of the β-CDP-N support, we purposed a "capture-catalysis-release" model to explain the high catalytic activity of Au@β-CDP-N. This explanation is supported by the guest-responsive properties of β-CDP-N. Moreover, the Au@β-CDP-N is easily recycled and maintained its high catalytic efficiency after seven successful cycles.

Keywords: β-cyclodextrin polymer, Au nanoparticles, superior catalytic activity, 4-nitrophenol reduction

References(63)

[1]
E. Gross,; G. A. Somorjai, Mesoscale nanostructures as a bridge between homogeneous and heterogeneous catalysis. Top. Catal. 2014, 57, 812-821.
[2]
F. Zaera, Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 2013, 42, 2746-2762.
[3]
W. J. Stark,; P. R. Stoessel,; W. Wohlleben,; A. Hafner, Industrial applications of nanoparticles. Chem. Soc. Rev. 2015, 44, 5793-5805.
[4]
L. C. Liu,; A. Corma, Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
[5]
Z. Li,; S. F. Ji,; Y. W. Liu,; X. Cao,; S. B. Tian,; Y. J. Chen,; Z. Q. Niu,; Y. D. Li, Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623-682.
[6]
S. B. Tian,; M. Hu,; Q. Xu,; W. B. Gong,; W. X. Chen,; J. R. Yang,; Y. R. Zhu,; C. Chen,; J. He,; Q. Liu, et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater., in press, .
[7]
M. Zahmakıran,; S. Özkar, Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale 2011, 3, 3462-3481.
[8]
S. Schauermann,; N. Nilius,; S. Shaikhutdinov,; H. J. Freund, Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 2013, 46, 1673-1681.
[9]
R. J. White,; R. Luque,; V. L. Budarin,; J. H. Clark,; D. J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 2009, 38, 481-494.
[10]
S. Navalon,; A. Dhakshinamoorthy,; M. Alvaro,; H. Garcia, Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord. Chem. Rev. 2016, 312, 99-148.
[11]
J. Zhang,; C. Y. Zheng,; M. L. Zhang,; Y. J. Qiu,; Q. Xu,; W. C. Cheong,; W. X. Chen,; L. R. Zheng,; L. Gu,; Z. P. Hu, et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082-3087 .
[12]
S. L. Xu,; S. C. Shen,; Z. Y. Wei,; S. Zhao,; L. J. Zuo,; M. X. Chen,; L. Wang,; Y. W. Ding,; P. Chen,; S. Q. Chu, et al. A library of carbon- supported ultrasmall bimetallic nanoparticles. Nano Res. 2020, 13, 2735-2740.
[13]
L. Shang,; T. Bian,; B. H. Zhang,; D. H. Zhang,; L. Z. Wu,; C. H. Tung,; Y. D. Yin,; T. R. Zhang, Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 250-254.
[14]
C. T. Wang,; L. Wang,; J. Zhang,; H. Wang,; J. P. Lewis,; F. S. Xiao, Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J. Am. Chem. Soc. 2016, 138, 7880-7883.
[15]
A. Dhakshinamoorthy,; A. M. Asiri,; H. Garcia, Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis. ACS Catal. 2017, 7, 2896-2919.
[16]
Q. H. Yang,; Q. Xu,; H. L. Jiang, Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774-4808.
[17]
G. D. Li,; S. L. Zhao,; Y. Zhang,; Z. Y. Tang, Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater. 2018, 30, 1800702.
[18]
S. F. Ji,; Y. J. Chen,; S. Zhao,; W. X. Chen,; L. J. Shi,; Y. Wang,; J. C. Dong,; Z. Li,; F. W. Li,; C. Chen, et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271-4275.
[19]
Y. G. Zhang,; S. N. Riduan, Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 2083-2094.
[20]
S. Y. Ding,; W. Wang, Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548-568.
[21]
J. S. M. Lee,; A. I. Cooper, Advances in conjugated microporous polymers. Chem. Rev. 2020, 120, 2171-2214.
[22]
D. J. Cram,; J. M. Cram, Host-guest chemistry. Science 1974, 183, 803-809.
[23]
G. A. Petsko,; D. Ringe, Protein Structure and Function; New Science Press: Sunderland, MA, 2004.
[24]
X. Y. Zhang,; K. N. Houk, Why enzymes are proficient catalysts: Beyond the Pauling paradigm. Acc. Chem. Res. 2005, 38, 379-385.
[25]
C. J. Brown,; F. D. Toste,; R. G. Bergman,; K. N. Raymond, Supramolecular catalysis in metal-ligand cluster hosts. Chem. Rev. 2015, 115, 3012-3035.
[26]
C. M. Hong,; R. G. Bergman,; K. N. Raymond,; F. D. Toste, Self- assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 2018, 51, 2447-2455.
[27]
K. I. Assaf,; W. M. Nau, Cucurbiturils: From synthesis to high- affinity binding and catalysis. Chem. Soc. Rev. 2015, 44, 394-418.
[28]
J. Meeuwissen,; J. N. H. Reek, Supramolecular catalysis beyond enzyme mimics. Nat. Chem. 2010, 2, 615-621.
[29]
D. Y. Xia,; P. Wang,; X. F. Ji,; N. M. Khashab,; J. L. Sessler,; F. H. Huang, Functional supramolecular polymeric networks: The marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev. 2020, 120, 6070-6123.
[30]
A. Alsbaiee,; B. J. Smith,; L. L. Xiao,; Y. H. Ling,; D. E. Helbling,; W. R. Dichtel, Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190-194.
[31]
H. Y. Li,; B. Meng,; S. H. Chai,; H. L. Liu,; S. Dai, Hyper-crosslinked β-cyclodextrin porous polymer: An adsorption-facilitated molecular catalyst support for transformation of water-soluble aromatic molecules. Chem. Sci. 2016, 7, 905-909.
[32]
S. N. Talapaneni,; D. Kim,; G. Barin,; O. Buyukcakir,; S. H. Je,; A. Coskun, Pillar[5]arene based conjugated microporous polymers for propane/methane separation through host-guest complexation. Chem. Mater. 2016, 28, 4460-4466.
[33]
D. Shetty,; I. Jahovic,; J. Raya,; F. Ravaux,; M. Jouiad,; J. C. Olsen,; A. Trabolsi, An ultra-absorbent alkyne-rich porous covalent polycalix[4]arene for water purification. J. Mater. Chem. A 2017, 5, 62-66.
[34]
K. Z. Su,; W. J. Wang,; B. B. Li,; D. Q. Yuan, Azo-bridged calix[4] resorcinarene-based porous organic frameworks with highly efficient enrichment of volatile iodine. ACS Sustainable Chem. Eng. 2018, 6, 17402-17409.
[35]
H. S. Yang,; Y. Du,; S. Wan,; G. D. Trahan,; Y. H. Jin,; W. Zhang, Mesoporous 2D covalent organic frameworks based on shape- persistent arylene-ethynylene macrocycles. Chem. Sci. 2015, 6, 4049-4053.
[36]
A. Giri,; W. Hussain,; B. SK,; A. Patra, Connecting the dots: Knitting C-phenylresorcin[4] arenes with aromatic linkers for task-specific porous organic polymers. Chem. Mater. 2019, 31, 8440-8450.
[37]
L. P. Skala,; A. N. Yang,; M. J. Klemes,; L. L. Xiao,; W. R. Dichtel, Resorcinarene cavitand polymers for the remediation of halomethanes and 1,4-dioxane. J. Am. Chem. Soc. 2019, 141, 13315-13319.
[38]
W. Gong,; Q. Q. Wu,; G. X. Jiang,; G. J. Li, Ultrafine silver nanoparticles supported on a covalent carbazole framework as high-efficiency nanocatalysts for nitrophenol reduction. J. Mater. Chem. A 2019, 7, 13449-13454.
[39]
J. Szejtli, Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743-1754.
[40]
A. R. Hedges, Industrial applications of cyclodextrins. Chem. Rev. 1998, 98, 2035-2044.
[41]
E. M. M. Del Valle, Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033-1046.
[42]
N. Szaniszló,; É. Fenyvesi,; J. Balla, Structure-stability study of cyclodextrin complexes with selected volatile hydrocarbon contaminants of soils. J. Incl. Phenom. Macrocycl. Chem. 2005, 53, 241-248.
[43]
M. Sankar,; Q. He,; R. V. Engel,; M. A. Sainna,; A. J. Logsdail,; J. A. Roldan,; D. J. Willock,; N. Agarwal,; C. J. Kiely,; G. J. Hutchings, Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890-3938.
[44]
A. Corma,; H. Garcia, Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096-2126.
[45]
H. L. Jiang,; T. Akita,; T. Ishida,; M. Haruta,; Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal- organic framework. J. Am. Chem. Soc. 2011, 133, 1304-1306.
[46]
Q. Yue,; Y. Zhang,; C. Wang,; X. Q. Wang,; Z. K. Sun,; X. F. Hou,; D. Y. Zhao,; Y. H. Deng, Magnetic yolk-shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high- performance nanocatalysts. J. Mater. Chem. A 2015, 3, 4586-4594.
[47]
P. Zhang,; C. J. Chen,; X. C. Kang,; L. J. Zhang,; C. Y. Wu,; J. L. Zhang,; B. X. Han, In situ synthesis of sub-nanometer metal particles on hierarchically porous metal-organic frameworks via interfacial control for highly efficient catalysis. Chem. Sci. 2018, 9, 1339-1343.
[48]
T. Ishida,; N. Kinoshita,; H. Okatsu,; T. Akita,; T. Takei,; M. Haruta, Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew. Chem., Int. Ed. 2008, 47, 9265-9268.
[49]
J. He,; S. Razzaque,; S. B. Jin,; I. Hussain,; B. E. Tan, Efficient synthesis of ultrafine gold nanoparticles with tunable sizes in a hyper-cross-linked polymer for nitrophenol reduction. ACS Appl. Nano Mater. 2019, 2, 546-553.
[50]
J. Wang,; A. H. Liu,; M. R. Li,; W. P. Zhang,; Y. S. Chen,; D. X. Tian,; W. C. Li, Thin porous alumina sheets as supports for stabilizing gold nanoparticles. ACS Nano 2013, 7, 4902-4910.
[51]
Y. Huang,; Y. Fang,; L. Y. Chen,; A. Lu,; L. N. Zhang, One-step synthesis of size-tunable gold nanoparticles immobilized on chitin nanofibrils via green pathway and their potential applications. Chem. Eng. J. 2017, 315, 573-582.
[52]
A. T. Ezhil Vilian,; R. Sivakumar,; Y. S. Huh,; J. H. Youk,; Y. K. Han, Palladium supported on an amphiphilic triazine-urea-functionalized porous organic polymer as a highly efficient electrocatalyst for electrochemical sensing of rutin in human plasma. ACS Appl. Mater. Interfaces 2018, 10, 19554-19563.
[53]
C. Y. Zhou,; C. Lai,; D. L. Huang,; G. M. Zeng,; C. Zhang,; M. Cheng,; L. Hu,; J. Wan,; W. P. Xiong,; M. Wen, et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven. Appl. Catal. B Environ. 2018, 220, 202-210.
[54]
P. Hervés,; M. Pérez-Lorenzo,; L. M. Liz-Marzán,; J. Dzubiella,; Y. Lu,; M. Ballauff, Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 2012, 41, 5577-5587.
[55]
G. F. Liao,; Y. Gong,; L. Zhong,; J. S. Fang,; L. Zhang,; Z. S. Xu,; H. Y. Gao,; B. Z. Fang, Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Res. 2019, 12, 2407-2436.
[56]
Y. T. Yang,; T. N. Wang,; X. F. Jing,; G. S. Zhu, Phosphine-based porous aromatic frameworks for gold nanoparticle immobilization with superior catalytic activities. J. Mater. Chem. A 2019, 7, 10004-10009.
[57]
Y. K. Fu,; L. Qin,; D. L. Huang,; G. M. Zeng,; C. Lai,; B. S. Li,; J. F. He,; H. Yi,; M. M. Zhang,; M. Cheng, et al. Chitosan functionalized activated coke for Au nanoparticles anchoring: Green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes. Appl. Catal. B Environ. 2019, 255, 117740.
[58]
L. L. Yang,; H. J. Wang,; J. Wang,; Y. Li,; W. Zhang,; T. B. Lu, A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity. J. Mater. Chem. A 2019, 7, 13142-13148.
[59]
T. B. Nguyen,; C. P. Huang,; R. A. Doong, Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. Appl. Catal. B Environ. 2019, 240, 337-347.
[60]
H. X. Fu,; Z. H. Zhang,; W. H. Fan,; S. F. Wang,; Y. Liu,; M. H. Huang, A soluble porous organic polymer for highly efficient organic- aqueous biphasic catalysis and convenient reuse of catalysts. J. Mater. Chem. A 2019, 7, 15048-15053.
[61]
P. T. Huang,; Y. N. Chen,; K. C. Chen,; S. H. Wu,; C. P. Liu, Confinement of silver nanoparticles in polystyrenes through molecular entanglements and their application for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2019, 7, 20919-20925.
[62]
P. An,; R. Anumula,; C. N. Cui,; Y. Liu,; F. Zhan,; Y. Tao,; Z. X. Luo, A facile method to synthesize water-soluble Pd8 nanoclusters unraveling the catalytic mechanism of p-nitrophenol to p-aminophenol. Nano Res. 2019, 12, 2589-2596.
[63]
K. Wu,; X. Y. Wang,; L. L. Guo,; Y. J. Xu,; L. Zhou,; Z. Y. Lyu,; K. Y. Liu,; R. Si,; Y. W. Zhang,; L. D. Sun, et al. Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Res. 2020, 13, 2044-2055.
File
12274_2020_3144_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 August 2020
Revised: 19 September 2020
Accepted: 24 September 2020
Published: 17 October 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 21865003 and 21562003), China Postdoctoral Science Foundation (No. 2018M640114), National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201910418003) and the Gannan Normal University Innovation Fund (No. YCX19A002) for generous support.

Return