Journal Home > Volume 14 , Issue 4

The demand for high-performance non-precious-metal electrocatalysts to replace the noble metal-based catalysts for oxygen reduction reaction (ORR) is intensively increasing. Herein, single-atomic copper sites supported on N-doped three-dimensional hierarchically porous carbon catalyst (Cu1/NC) was prepared by coordination pyrolysis strategy. Remarkably, the Cu1/NC-900 catalyst not only exhibits excellent ORR performance with a half-wave potential of 0.894 V (vs. RHE) in alkaline media, outperforming those of commercial Pt/C (0.851 V) and Cu nanoparticles anchored on N-doped porous carbon (CuNPs/NC-900), but also demonstrates high stability and methanol tolerance. Moreover, the Cu1/NC-900 based Zn-air battery exhibits higher power density, rechargeability and cyclic stability than the one based on Pt/C. Both experimental and theoretical investigations demonstrated that the excellent performance of the as-obtained Cu1/NC-900 could be attributed to the synergistic effect between copper coordinated by three N atoms active sites and the neighbouring carbon defect, resulting in elevated Cu d-band centers of Cu atoms and facilitating intermediate desorption for ORR process. This study may lead towards the development of highly efficient non-noble metal catalysts for applications in electrochemical energy conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery

Show Author's information Wenjie Wu1,§Yan Liu2,§Dong Liu3Wenxing Chen4Zhaoyi Song1Ximin Wang1Yamin Zheng2Ning Lu2Chunxia Wang1( )Junjie Mao2( )Yadong Li5
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Optoelectric Materials Science and Technology and Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241002, China
State key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Wenjie Wu and Yan Liu contributed equally to this work.

Abstract

The demand for high-performance non-precious-metal electrocatalysts to replace the noble metal-based catalysts for oxygen reduction reaction (ORR) is intensively increasing. Herein, single-atomic copper sites supported on N-doped three-dimensional hierarchically porous carbon catalyst (Cu1/NC) was prepared by coordination pyrolysis strategy. Remarkably, the Cu1/NC-900 catalyst not only exhibits excellent ORR performance with a half-wave potential of 0.894 V (vs. RHE) in alkaline media, outperforming those of commercial Pt/C (0.851 V) and Cu nanoparticles anchored on N-doped porous carbon (CuNPs/NC-900), but also demonstrates high stability and methanol tolerance. Moreover, the Cu1/NC-900 based Zn-air battery exhibits higher power density, rechargeability and cyclic stability than the one based on Pt/C. Both experimental and theoretical investigations demonstrated that the excellent performance of the as-obtained Cu1/NC-900 could be attributed to the synergistic effect between copper coordinated by three N atoms active sites and the neighbouring carbon defect, resulting in elevated Cu d-band centers of Cu atoms and facilitating intermediate desorption for ORR process. This study may lead towards the development of highly efficient non-noble metal catalysts for applications in electrochemical energy conversion.

Keywords: oxygen reduction reaction, non-noble metal, single atomic sites catalysts, nitrogen-doped carbon materials, carbon defect

References(41)

[1]
M. Armand,; J. M. Tarascon, Building better batteries. Nature 2008, 451, 652-657.
[2]
S. Chu,; A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
[3]
J. J. Mao,; L. F. Yang,; P. Yu,; X. W. Wei,; L. Q. Mao, Electrocatalytic four-electron reduction of oxygen with copper (II)-based metal- organic frameworks. Electrochem. Commun. 2012, 19, 29-31.
[4]
Y. G. Li,; H. J. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257-5275.
[5]
M. H. Shao,; Q. W. Chang,; J. P. Dodelet,; R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594-3657.
[6]
B. Y. Xia,; Y. Yan,; N. Li,; H. B. Wu,; X. W. Lou,; X. Wang, A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.
[7]
Z. K. Yang,; B. X. Chen,; W. X. Chen,; Y. T. Qu,; F. Y. Zhou,; C. M. Zhao,; Q. Xu,; Q. H. Zhang,; X. Z. Duan,; Y. E. Wu, Directly transforming copper(I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.
[8]
X. P. Han,; X. F. Ling,; D. S. Yu,; D. Y. Xie,; L. L. Li,; S. J. Peng,; C. Zhong,; N. Q. Zhao,; Y. D. Deng,; W. B. Hu, Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.
[9]
N. Q. Zhang,; C. L. Ye,; H. Yan,; L. C. Li,; H. He,; D. S. Wang,; Y. D. Li, Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.
[10]
T. T. Sun,; Y. L. Li,; T. T. Cui,; L. B. Xu,; Y. G. Wang,; W. X. Chen,; P. P. Zhang,; T. Y. Zheng,; X. Z. Fu,; S. L. Zhang, et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206-6214.
[11]
P. Q. Yin,; T. Yao,; Y. E. Wu,; L. R. Zheng,; Y. Lin,; W. Liu,; H. X. Ju,; J. F. Zhu,; X. Hong,; Z. X. Deng, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800-10805.
[12]
J. J. Mao,; J. Li,; J. J. Pei,; Y. Liu,; D. S. Wang,; Y. D. Li, Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today 2019, 26, 164-175.
[13]
K. Li,; X. X. Li,; H. W. Huang,; L. H. Luo,; X. Li,; X. P. Yan,; C. Ma,; R. Si,; J. L. Yang,; J. Zeng, One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159-16167.
[14]
J. J. Mao,; Y. J. Chen,; J. J. Pei,; D. S. Wang,; Y. D. Li, Pt-M (M = Cu, Fe, Zn, etc.) bimetallic nanomaterials with abundant surface defects and robust catalytic properties. Chem. Commun. 2016, 52, 5985-5988.
[15]
F. Li,; G. F. Han,; H. J. Noh,; S. J. Kim,; Y. L. Lu,; H. Y. Jeong,; Z. P. Fu,; J. B. Baek, Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263-2269.
[16]
X. X. Wang,; D. A. Cullen,; Y. T. Pan,; S. Hwang,; M. Y. Wang,; Z. X. Feng,; J. Y. Wang,; M. H. Engelhard,; H. G. Zhang,; Y. H. He, et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.
[17]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[18]
H. H. Wu,; H. B. Li,; X. F. Zhao,; Q. F. Liu,; J. Wang,; J. P. Xiao,; S. H. Xie,; R. Si,; F. Yang,; S. Miao, et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 2016, 9, 3736-3745.
[19]
H. G. Zhang,; S. Hwang,; M. Y. Wang,; Z. X. Feng,; S. Karakalos,; L. L. Luo,; Z. Qiao,; X. H. Xie,; C. M. Wang,; D. Su, et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143-14149.
[20]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[21]
J. J. Mao,; J. S. Yin,; J. J. Pei,; D. S. Wang,; Y. D. Li, Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today 2020, 34, 100917.
[22]
J. Q. Sun,; S. E. Lowe,; L. J. Zhang,; Y. Z. Wang,; K. L. Pang,; Y. Wang,; Y. L. Zhong,; P. R. Liu,; K. Zhao,; Z. Y. Tang, et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511-16515.
[23]
H. S. Shang,; X. Y. Zhou,; J. C. Dong,; A. Li,; X. Zhao,; Q. H. Liu,; Y. Lin,; J. J. Pei,; Z. Li, et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.
[24]
J. Zhang,; Y. M. Sun,; J. W. Zhu,; Z. K. Kou,; P. Hu,; L. Liu,; S. Z. Li,; S. C. Mu,; Y. H. Huang, Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 2018, 52, 307-314.
[25]
B. T. Qiao,; A. Q. Wang,; X. F. Yang,; L. F. Allard,; Z. Jiang,; Y. Y. Cui,; J. Y. Liu,; J. Li,; T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[26]
M. Zhou,; Y. Jiang,; G. Wang,; W. J. Wu,; W. X. Chen,; P. Yu,; Y. Q. Lin,; J. J. Mao,; L. Q. Mao, Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.
[27]
S. B. Tian,; M. Hu,; Q. Xu,; W. B. Gong,; W. X. Chen,; J. R. Yang,; Y. Q. Zhu,; C. Chen,; J. He,; Q. Liu, et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2020, .
[28]
J. J. Mao,; C. T. He,; J. J. Pei,; Y. Liu,; J. Li,; W. X. Chen,; D. S. He,; D. S. Wang,; Y. D. Li, Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442-3448.
[29]
W. J. Ma,; J. J. Mao.; X. T. Yang,; C. Pan,; W. X. Chen,; M. Wang,; P. Yu,; L. Q. Mao,; Y. D. Li, A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159-162.
[30]
J. Zhang,; C. Y. Zheng,; M. L. Zhang,; Y. J. Qiu,; Q. Xu,; W. C. Cheong,; W. X. Chen,; L. R. Zheng,; L. Gu,; Z. P. Hu, et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082-3087.
[31]
Q. Xu,; C. X. Guo,; S. B. Tian,; J. Zhang,; W. X. Chen,; W. C. Cheong,; L. Gu,; L. R. Zheng,; J. P. Xiao,; Q. Liu, et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972-981.
[32]
J. J. Mao,; C. T. He,; J. J. Pei,; W. X. Chen,; D. S. He,; Y. Q. He,; Z. B. Zhuang,; C. Chen,; Q. Peng,; D. S. Wang, et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.
[33]
J. Yang,; Z. Y. Qiu,; C. M. Zhao,; W. C. Wei,; W. X. Chen,; Z. J. Li,; Y. T. Qu,; J. C. Dong,; J. Luo,; Z. Y. Li, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem., Int. Ed. 2018, 57, 14095-14100.
[34]
M. L. Xiao,; J. B. Zhu,; G. R. Li,; N. Li,; S. Li,; Z. P. Cano,; L. Ma,; P. X. Cui,; P. Xu,; G. P. Jiang, et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9640-9645.
[35]
C. Z. Zhu,; S. F. Fu,; Q. R. Shi,; D. Du,; Y. H. Lin, Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944-13960.
[36]
J. Z. Li,; M. J. Chen,; D. A. Cullen,; S. Hwang,; M. Y. Wang,; B. Y. Li,; K. X. Liu,; S. Karakalos,; M. Lucero,; H. G. Zhang, et al. Atomically dispersed manganese catalysts for oxygen reduction in proton- exchange membrane fuel cells. Nat. Catal. 2018, 1, 935-945.
[37]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[38]
Y. T. Qu,; Z. J. Li,; W. X. Chen,; Y. Lin,; T. W. Yuan,; Z. K. Yang,; C. M. Zhao,; J. Wang,; C. Zhao,; X. Wang, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781-786.
[39]
A. Q. Wang,; J. Li,; T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.
[40]
D. H. Li,; Y. Jia,; G. J. Chang,; J. Chen,; H. W. Liu,; J. C. Wang,; Y. F. Hu,; Y. Z. Xia,; D. J. Yang,; X. D. Yao, A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345-2356.
[41]
B. Hammer,; J. K. Norskov, Why gold is the noblest of all the metals. Nature 1995, 376, 238-240.
File
12274_2020_3141_MOESM1_ESM.pdf (7.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 August 2020
Revised: 22 September 2020
Accepted: 23 September 2020
Published: 23 October 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21804319 and 21971002), the Natural Science Foundation of Anhui province (Nos. 1908085QB45 and 2008085QB81) and the Education Department of Anhui Province Foundation (No. KJ2019A0503). We thank the BL14W1 station in Shanghai Synchrotron Radiation Facility (SSRF) and 1W1B station for XAFS measurement in Beijing Synchrotron Radiation Facility (BSRF). The calculations in this paper have been done on the supercomputing system of the National Supercomputing Center in Changsha.

Return