Journal Home > Volume 14 , Issue 5

Due to the unique fluorescence characteristics, superstructures from self-assembly of semiconductor nanoparticles have become essential components of material and chemical science, and thus it has broad application potential in displays, single-photon source, sensing, biological tagging and emerging quantum technologies. Superstructure refers to an artificial functional architecture whose length scale is between the quantum scale and the macroscale. When solely treating this complicated stage fitted from less complicated pieces together (basic nanoparticles) and pile speculation on speculation, we must understand the fundamental questions, that is, what the hierarchy or specialization of function is at the stage. The uniqueness of this stage is not the collection of basic nanoparticles, but the behavior that emerges on fluorescence-basically a new type of behavior. Under the angle of view, this study reviews the advances in the fluorescence of individual semiconductor nanoparticles, inter-nanoparticles coupling and thus emergent fluorescence behaviors of assemblies. We also try to present the methodology for seeking emergent behaviors on fluorescence.


menu
Abstract
Full text
Outline
About this article

Self-assembly of semiconductor nanoparticles toward emergent behaviors on fluorescence

Show Author's information Xiao Li1,2Zhili Lu3Tie Wang1,2,4( )
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract

Due to the unique fluorescence characteristics, superstructures from self-assembly of semiconductor nanoparticles have become essential components of material and chemical science, and thus it has broad application potential in displays, single-photon source, sensing, biological tagging and emerging quantum technologies. Superstructure refers to an artificial functional architecture whose length scale is between the quantum scale and the macroscale. When solely treating this complicated stage fitted from less complicated pieces together (basic nanoparticles) and pile speculation on speculation, we must understand the fundamental questions, that is, what the hierarchy or specialization of function is at the stage. The uniqueness of this stage is not the collection of basic nanoparticles, but the behavior that emerges on fluorescence-basically a new type of behavior. Under the angle of view, this study reviews the advances in the fluorescence of individual semiconductor nanoparticles, inter-nanoparticles coupling and thus emergent fluorescence behaviors of assemblies. We also try to present the methodology for seeking emergent behaviors on fluorescence.

Keywords: optical properties, nanoparticle assembly, ordered structures, coupling, emergent

References(76)

[1]
C. R. Kagan,; C. B. Murray, Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013-1026.
[2]
C. Liu,; L. R. Zheng,; Q. Song,; Z. J. Xue,; C. H. Huang,; L. Liu,; X. Z. Qiao,; X. Li,; K. Y. Liu,; T. Wang, A metastable crystalline phase in two-dimensional metallic oxide nanoplates. Angew. Chem., Int. Ed. 2019, 58, 2055-2059.
[3]
Y. X. Liu,; J. Vanacken,; X. M. Chen,; J. B. Han,; Z. Q. Zhong,; Z. C. Xia,; B. R. Chen,; H. Wu,; Z. Jin,; J. Y. Ge, et al. Direct observation of nanoscale light confinement without metal. Adv. Mater. 2019, 31, 1806341.
[4]
Z. J. Xue,; C. Yan,; T. Wang, From atoms to lives: The evolution of nanoparticle assemblies. Adv. Funct. Mater. 2019, 29, 1807658.
[5]
H. Zhang,; H. Y. Li,; B. Akram,; X. Wang, Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327-1331.
[6]
C. Yan,; T. Wang, A new view for nanoparticle assemblies: From crystalline to binary cooperative complementarity. Chem. Soc. Rev. 2017, 46, 1483-1509.
[7]
B. Yang,; S. Zhou,; J. Zeng,; L. P. Zhang,; R. H. Zhang,; K. Liang,; L. Xie,; B. Shao,; S. L. Song,; G. Huang, et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013-1019.
[8]
X. Z. Qiao,; X. Y. Chen,; C. H. Huang,; A. L. Li,; X. Li,; Z. L. Lu,; T. Wang, Detection of exhaled volatile organic compounds improved by hollow nanocages of layered double hydroxide on Ag nanowires. Angew. Chem., Int. Ed. 2019, 58, 16523-16527.
[9]
X. Y. Qin,; T. Wang,; L. Jiang, Surface engineering of nanoparticles for triggering collective properties of supercrystals. Natl. Sci. Rev. 2017, 4, 672-677.
[10]
X. Zhao,; X. J. Zha,; L. S. Tang,; J. H. Pu,; K. Ke,; R. Y. Bao,; Z. Y. Liu,; M. B. Yang,; W. Yang, Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255-264.
[11]
P. W. Anderson, More is different. Science 1972, 177, 393-396.
[12]
I. V. Martynenko,; A. S. Baimuratov,; F. Weigert,; J. X. Soares,; L. Dhamo,; P. Nickl,; I. Doerfel,; J. Pauli,; I. D. Rukhlenko,; A. V. Baranov, et al. Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Res. 2019, 12, 1595-1603.
[13]
T. S. Bischof,; R. E. Correa,; D. Rosenberg,; E. A. Dauler,; M. G. Bawendi, Measurement of emission lifetime dynamics and biexciton emission quantum yield of individual InAs colloidal nanocrystals. Nano Lett. 2014, 14, 6787-6791.
[14]
K. E. Hughes,; J. L. Stein,; M. R. Friedfeld,; B. M. Cossairt,; D. R. Gamelin, Effects of surface chemistry on the photophysics of colloidal InP nanocrystals. ACS Nano 2019, 13, 14198-14207.
[15]
Y. Lv,; X. N. Huang,; C. F. Zhang,; X. Y. Wang,; M. Xiao, Multiple dark excitons in semiconductor CdSe nanocrystals. J. Phys. Chem. C 2018, 122, 23758-23763.
[16]
M. A. Becker,; R. Vaxenburg,; G. Nedelcu,; P. C. Sercel,; A. Shabaev,; M. J. Mehl,; J. G. Michopoulos,; S. G. Lambrakos,; N. Bernstein,; J. L. Lyons, et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189-193.
[17]
P. Tamarat,; M. I. Bodnarchuk,; J. B. Trebbia,; R. Erni,; M. V. Kovalenko,; J. Even,; B. Lounis, The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 2019, 18, 717-724.
[18]
J. A. Sichert,; Y. Tong,; N. Mutz,; M. Vollmer,; S. Fischer,; K. Z. Milowska,; R. García Cortadella,; B. Nickel,; C. Cardenas-Daw,; J. K. Stolarczyk, et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015, 15, 6521-6527.
[19]
S. X. Lin,; J. Z. Li,; C. D. Pu,; H. R. Lei,; M. Y. Zhu,; H. Y. Qin,; X. G. Peng, Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 2020, 13, 824-831.
[20]
L. Brus, Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555-2560.
[21]
Y. Kim,; S. Ham,; H. Jang,; J. H. Min,; H. Chung,; J. Lee,; D. Kim,; E. Jang, Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS Appl. Nano Mater. 2019, 2, 1496-1504.
[22]
Z. H. Xu,; Y. Li,; J. Z. Li,; C. D. Pu,; J. H. Zhou,; L. L. Lv,; X. G. Peng, Formation of size-tunable and nearly monodisperse InP nanocrystals: Chemical reactions and controlled synthesis. Chem. Mater. 2019, 31, 5331-5341.
[23]
M. A. Boles,; D. S. Ling,; T. Hyeon,; D. V. Talapin, The surface science of nanocrystals. Nat. Mater. 2016, 15, 141-153.
[24]
P. G. Han,; X. Zhang,; X. Mao,; B. Yang,; S. Q. Yang,; Z. C. Feng,; D. H. Wei,; W. Q. Deng,; T. Pullerits,; K. L. Han, Size effect of lead-free halide double perovskite on luminescence property. Sci. China Chem. 2019, 62, 1405-1413.
[25]
Y. Gao,; X. G. Peng, Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J. Am. Chem. Soc. 2015, 137, 4230-4235.
[26]
X. Li,; Z. J. Xue,; D. Luo,; C. H. Huang,; L. Z. Liu,; X. Z. Qiao,; C. Liu,; Q. Song,; C. Yan,; Y. C. Li, et al. A stable lead halide perovskite nanocrystals protected by PMMA. Sci. China Mater. 2018, 61, 363-370.
[27]
X. C. Li,; C. L. Li,; Y. Y. Wu,; J. Cao,; Y. Tang, A reaction-and-assembly approach using monoamine zinc porphyrin for highly stable large-area perovskite solar cells. Sci. China Chem. 2020, 63, 777-784.
[28]
J. Jasieniak,; P. Mulvaney, From Cd-rich to Se-rich—The manipulation of CdSe nanocrystal surface stoichiometry. J. Am. Chem. Soc. 2007, 129, 2841-2848.
[29]
J. Y. Rempel,; B. L. Trout,; M. G. Bawendi,; K. F. Jensen, Density functional theory study of ligand binding on CdSe (0001), (0001(_)), and (112(_)0) single crystal relaxed and reconstructed surfaces:  Implications for nanocrystalline growth. J. Phys. Chem. B 2006, 110, 18007-18016.
[30]
D. Zherebetskyy,; M. Scheele,; Y. J. Zhang,; N. Bronstein,; C. Thompson,; D. Britt,; M. Salmeron,; P. Alivisatos,; L. W. Wang, Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380-1384.
[31]
J. Aldana,; Y. A. Wang,; X. G. Peng, Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 2001, 123, 8844-8850.
[32]
N. J. Thompson,; M. W. B. Wilson,; D. N. Congreve,; P. R. Brown,; J. M. Scherer,; T. S. Bischof,; M. F. Wu,; N. Geva,; M. Welborn,; T. Van Voorhis, et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 2014, 13, 1039-1043.
[33]
M. Tabachnyk,; B. Ehrler,; S. Gélinas,; M. L. Böhm,; B. J. Walker,; K. P. Musselman,; N. C. Greenham,; R. H. Friend,; A. Rao, Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 2014, 13, 1033-1038.
[34]
C. Mongin,; S. Garakyaraghi,; N. Razgoniaeva,; M. Zamkov,; F. N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 2016, 351, 369-372.
[35]
M. F. Wu,; D. N. Congreve,; M. W. B. Wilson,; J. Jean,; N. Geva,; M. Welborn,; T. Van Voorhis,; V. Bulović,; M. G. Bawendi,; M. A. Baldo, Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 2016, 10, 31-34.
[36]
C. Mongin,; P. Moroz,; M. Zamkov,; F. N. Castellano, Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 2018, 10, 225-230.
[37]
Z. W. Fang,; Q. Y. Xing,; D. Fernandez,; X. Zhang,; G. H. Yu, A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179-1190.
[38]
H. M. Nguyen,; O. Seitz,; W. N. Peng,; Y. N. Gartstein,; Y. J. Chabal,; A. V. Malko, Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes. ACS Nano 2012, 6, 5574-5582.
[39]
F. Meinardi,; A. Colombo,; K. A. Velizhanin,; R. Simonutti,; M. Lorenzon,; L. Beverina,; R. Viswanatha,; V. I. Klimov,; S. Brovelli, Large-area luminescent solar concentrators based on “stokes-shift-engineered” nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2014, 8, 392-399.
[40]
Z. L. Li,; A. Johnston,; M. Y. Wei,; M. I. Saidaminov,; J. Martins de Pina,; X. P. Zheng,; J. K. Liu,; Y. Liu,; O. M. Bakr,; E. H. Sargent, Solvent-solute coordination engineering for efficient perovskite luminescent solar concentrators. Joule 2020, 4, 631-643.
[41]
J. J. Choi,; J. Luria,; B. R. Hyun,; A. C. Bartnik,; L. F. Sun,; Y. F. Lim,; J. A. Marohn,; F. W. Wise,; T. Hanrath, Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett. 2010, 10, 1805-1811.
[42]
C. Curutchet,; A. Franceschetti,; A. Zunger,; G. D. Scholes, Examining förster energy transfer for semiconductor nanocrystalline quantum dot donors and acceptors. J. Phys. Chem. C 2008, 112, 13336-13341.
[43]
O. Erdem,; K. Gungor,; B. Guzelturk,; I. Tanriover,; M. Sak,; M. Olutas,; D. Dede,; Y. Kelestemur,; H. V. Demir, Orientation-controlled nonradiative energy transfer to colloidal nanoplatelets: Engineering dipole orientation factor. Nano Lett. 2019, 19, 4297-4305.
[44]
Y. Z. Shen,; Y. D. Sun,; R. Q. Yan,; E. Q. Chen,; H. Wang,; D. J. Ye,; J. J. Xu,; H. Y. Chen, Rational engineering of semiconductor QDs enabling remarkable 1O2 production for tumor-targeted photodynamic therapy. Biomaterials 2017, 148, 31-40.
[45]
Y. Z. Shen,; Q. Tian,; Y. D. Sun,; J. J. Xu,; D. J. Ye,; H. Y. Chen, ATP-activatable photosensitizer enables dual fluorescence imaging and targeted photodynamic therapy of tumor. Anal. Chem. 2017, 89, 13610-13617.
[46]
D. Luo,; X. Y. Qin,; Q. Song,; X. Z. Qiao,; Z. Zhang,; Z. J. Xue,; C. Liu,; G. Mo,; T. Wang, Ordered superparticles with an enhanced photoelectric effect by sub-nanometer interparticle distance. Adv. Funct. Mater. 2017, 27, 1701982.
[47]
J. B. Cui,; Y. E. Panfil,; S. Koley,; D. Shamalia,; N. Waiskopf,; S. Remennik,; I. Popov,; M. Oded,; U. Banin, Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nat. Commun. 2019, 10, 5401.
[48]
M. S. Azzaro,; A. Dodin,; D. Y. Zhang,; A. P. Willard,; S. T. Roberts, Exciton-delocalizing ligands can speed up energy migration in nanocrystal solids. Nano Lett. 2018, 18, 3259-3270.
[49]
P. Moroz,; L. Royo Romero,; M. Zamkov, Colloidal semiconductor nanocrystals in energy transfer reactions. Chem. Commun. 2019, 55, 3033-3048.
[50]
V. K. Busov,; P. A. Frantsuzov, Models of semiconductor quantum dots blinking based on spectral diffusion. Opt. Spectrosc. 2019, 126, 70-82.
[51]
A. L. Efros,; D. J. Nesbitt, Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661-671.
[52]
G. C. Yuan,; D. E. Gómez,; N. Kirkwood,; K. Boldt,; P. Mulvaney, Two mechanisms determine quantum dot blinking. ACS Nano 2018, 12, 3397-3405.
[53]
I. Chung,; M. G. Bawendi, Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots. Phys. Rev. B 2004, 70, 165304.
[54]
M. Yu,; A. Van Orden, Enhanced fluorescence intermittency of CdSe-ZnS quantum-dot clusters. Phys. Rev. Lett. 2006, 97, 237402.
[55]
S. Y. Wang,; C. Querner,; T. Dadosh,; C. H. Crouch,; D. S. Novikov,; M. Drndic, Collective fluorescence enhancement in nanoparticle clusters. Nat. Commun. 2011, 2, 364.
[56]
D. P. Shepherd,; K. J. Whitcomb,; K. K. Milligan,; P. M. Goodwin,; M. P. Gelfand,; A. Van Orden, Fluorescence intermittency and energy transfer in small clusters of semiconductor quantum dots. J. Phys. Chem. C 2010, 114, 14831-14837.
[57]
W. G. Xu,; W. W. Liu,; J. F. Schmidt,; W. J. Zhao,; X. Lu,; T. Raab,; C. Diederichs,; W. B. Gao,; D. V. Seletskiy,; Q. H. Xiong, Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 2017, 541, 62-67.
[58]
M. D. Tessier,; L. Biadala,; C. Bouet,; S. Ithurria,; B. Abecassis,; B. Dubertret, Phonon line emission revealed by self-assembly of colloidal nanoplatelets. ACS Nano 2013, 7, 3332-3340.
[59]
J. F. Wang,; M. S. Gudiksen,; X. F. Duan,; Y. Cui,; C. M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455-1457.
[60]
D. Kovalev,; M. Ben Chorin,; J. Diener,; F. Koch,; A. L. Efros,; M. Rosen,; N. A. Gippius,; S. G. Tikhodeev, Porous Si anisotropy from photoluminescence polarization. Appl. Phys. Lett. 1995, 67, 1585-1587.
[61]
J. T. Hu,; L. S. Li,; W. D. Yang,; L. Manna,; L. W. Wang,; A. P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292, 2060-2063.
[62]
A. A. Yamaguchi, Anisotropic optical matrix elements in strained GaN quantum wells on semipolar and nonpolar substrates. Jpn. J. Appl. Phys. 2007, 46, L789.
[63]
A. Sitt,; A. Salant,; G. Menagen,; U. Banin, Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 2011, 11, 2054-2060.
[64]
T. Wang,; J. Q. Zhuang,; J. Lynch,; O. Chen,; Z. L. Wang,; X. R. Wang,; D. LaMontagne,; H. M. Wu,; Z. W. Wang,; Y. C. Cao, Self-assembled colloidal superparticles from nanorods. Science 2012, 338, 358-363.
[65]
D. V. Talapin,; R. Koeppe,; S. Götzinger,; A. Kornowski,; J. M. Lupton,; A. L. Rogach,; O. Benson,; J. Feldmann,; H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 2003, 3, 1677-1681.
[66]
A. Ugur,; F. Hatami,; A. N. Vamivakas,; L. Lombez,; M. Atatüre,; K. Volz,; W. T. Masselink, Highly polarized self-assembled chains of single layer InP/(In,Ga)P quantum dots. Appl. Phys. Lett. 2010, 97, 253113.
[67]
X. Q. Gao,; B. Han,; X. K. Yang,; Z. Y. Tang, Perspective of chiral colloidal semiconductor nanocrystals: Opportunity and challenge. J. Am. Chem. Soc. 2019, 141, 13700-13707.
[68]
S. W. Huo,; P. F. Duan,; T. F. Jiao,; Q. M. Peng,; M. H. Liu, Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew. Chem., Int. Ed. 2017, 56, 12174-12178.
[69]
Y. T. Sang,; J. L. Han,; T. H. Zhao,; P. F. Duan,; M. H. Liu, Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater., in press, .
[70]
Y. T. Sang,; D. Yang,; P. F. Duan,; M. H. Liu, Towards homochiral supramolecular entities from achiral molecules by vortex mixing-accompanied self-assembly. Chem. Sci. 2019, 10, 2718-2724.
[71]
P. P. Wang,; S. J. Yu,; M. Ouyang, Assembled suprastructures of inorganic chiral nanocrystals and hierarchical chirality. J. Am. Chem. Soc. 2017, 139, 6070-6073.
[72]
R. H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99-110.
[73]
Q. H. F. Vrehen,; M. F. H. Schuurmans,; D. Polder, Superfluorescence: Macroscopic quantum fluctuations in the time domain. Nature 1980, 285, 70-71.
[74]
G. Rainò,; M. A. Becker,; M. I. Bodnarchuk,; R. F. Mahrt,; M. V. Kovalenko,; T. Stöferle, Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671-675.
[75]
R. Loudon, Photon bunching and antibunching. Phys. Bull. 1976, 27, 21-23.
[76]
B. H. Lv,; H. C. Zhang,; L. P. Wang,; C. F. Zhang,; X. Y. Wang,; J. Y. Zhang,; M. Xiao, Photon antibunching in a cluster of giant CdSe/CdS nanocrystals. Nat. Commun. 2018, 9, 1536.
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 August 2020
Revised: 21 September 2020
Accepted: 23 September 2020
Published: 19 October 2020
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21925405 and 201874005), the National Key Research and Development Program of China (No. 2018YFA0208800), and Chinese Academy of Sciences (Nos. XDA23030106 and YJKYYQ20180044).

Return