Journal Home > Volume 14 , Issue 5

Atomic noble metals stand as one of the most advanced catalysts because of their unique properties and interaction with the reactants. However, due to their high activity, noble atomic catalysts tend to aggregate and deactivate in practical application. Moreover, supports aimed to disperse these atomic catalysts often suffer from weak confinement and poor porosity, thus limited the catalytic efficiency of noble atoms. Here, we report the facile encapsulation of atomic noble catalyst in cheap cerous metal-organic framework (Ce-MOF) crystals to create a robust catalyst that could deliver high catalytic performance for the reduction of 4-nitrophenol without decay in long-term cycling test. Specifically, Au atoms encapsulated in Ce-MOF exhibited ultrahigh turnover frequency (TOF) of 131 min-1 for the reduction of 4-nitrophenol in minutes, consuming only 10% precious metals compared with state-of-the-art catalysts operated under same condition.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Isolated atomic catalysts encapsulated in MOF for ultrafast water pollutant treatment

Show Author's information Shuailong Guo1,§Hao Yuan1,§Wei Luo3Xiaoqing Liu4Xiantao Zhang3Haoqing Jiang1,2( )Feng Liu1,3( )Gary J. Cheng2( )
The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
Birck Nanotechnology Centre, School of Industrial Engineering, Purdue University, West Lafayette, IN 47906, USA
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
Center for materials research and analysis, Wuhan University of Technology, Wuhan 430072, China

Abstract

Atomic noble metals stand as one of the most advanced catalysts because of their unique properties and interaction with the reactants. However, due to their high activity, noble atomic catalysts tend to aggregate and deactivate in practical application. Moreover, supports aimed to disperse these atomic catalysts often suffer from weak confinement and poor porosity, thus limited the catalytic efficiency of noble atoms. Here, we report the facile encapsulation of atomic noble catalyst in cheap cerous metal-organic framework (Ce-MOF) crystals to create a robust catalyst that could deliver high catalytic performance for the reduction of 4-nitrophenol without decay in long-term cycling test. Specifically, Au atoms encapsulated in Ce-MOF exhibited ultrahigh turnover frequency (TOF) of 131 min-1 for the reduction of 4-nitrophenol in minutes, consuming only 10% precious metals compared with state-of-the-art catalysts operated under same condition.

Keywords: metal-organic framework, porous, atomic catalysts, reduction of 4-nitrophenol

References(66)

[1]
WWAP. United Nations World Water Development Report 2015: Water for a Sustainable World. Paris: United Nations Educational, Scientific and Cultural Organization, 2015.
[2]
P. Cañizares,; C. Sáez,; J. Lobato,; M. A. Rodrigo, Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes. Ind. Eng. Chem. Res. 2004, 43, 1944-1951.
[3]
M. Thakur,; G. Sharma,; T. Ahamad,; A. A. Ghfar,; D. Pathania,; M. Naushad, Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity. Colloids Surf. B Biointerfaces 2017, 157, 456-463.
[4]
S. Haydar,; M. A. Ferro-Garcı́a,; J. Rivera-Utrilla,; J. P. Joly, Adsorption of p-nitrophenol on an activated carbon with different oxidations. Carbon 2003, 41, 387-395.
[5]
O. A. O’Connor,; L. Y. Young, Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions. Environ. Toxicol. Chem. 1989, 8, 853-862.
[6]
J. M. Zhang,; G. Z. Chen,; D. Guay,; M. Chaker,; D. L. Ma, Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 2014, 6, 2125-2130.
[7]
S. Panigrahi,; S. Basu,; S. Praharaj,; S. Pande,; S. Jana,; A. Pal,; S. K. Ghosh,; T. Pal, Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C 2007, 111, 4596-4605.
[8]
S. J. Ye,; A. P. Brown,; A. C. Stammers,; N. H. Thomson,; J. Wen,; L. Roach,; R. J. Bushby,; P. L. Coletta,; K. Critchley,; S. D. Connell, et al. Sub-nanometer thick gold Nanosheets as highly efficient catalysts. Adv. Sci. 2019, 6, 1900911.
[9]
S. Goswami,; H. Noh,; L. R. Redfern,; K. I. Otake,; C. W. Kung,; Y. X. Cui,; K. W. Chapman,; O. K. Farha,; J. T. Hupp, Pore-Templated growth of catalytically active gold nanoparticles within a metal-organic framework. Chem. Mater. 2019, 31, 1485-1490.
[10]
A. Dhakshinamoorthy,; A. M. Asiri,; H. Garcia, Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis. ACS Catal. 2017, 7, 2896-2919.
[11]
B. Hvolbæk,; T. V. W. Janssens,; B. S. Clausen,; H. Falsig,; C. H. Christensen,; J. K. Nørskov, Catalytic activity of Au nanoparticles. Nano Today 2007, 2, 14-18.
[12]
M. Valden,; X. Lai,; D. W. Goodman, Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 1998, 281, 1647-1650.
[13]
J. A. van Bokhoven,; C. Louis,; J. T. Miller,; M. M. Tromp,; O. V. Safonova,; P. Glatzel, Activation of oxygen on gold/alumina catalysts: In situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy. Angew. Chem., Int. Ed. 2006, 45, 4651-4654.
[14]
B. Hammer, Special sites at noble and late transition metal catalysts. Top. Catal. 2006, 37, 3-16.
[15]
B. R. Cuenya,; F. Behafarid, Nanocatalysis: Size-and shape-dependent chemisorption and catalytic reactivity. Surf. Sci. Rep. 2015, 70, 135-187.
[16]
H. Y. Chen,; X. B. Fan,; J. W. Ma,; G. L. Zhang,; F. B. Zhang,; Y. Li, Green route for microwave-assisted preparation of AuAg-alloy-decorated graphene hybrids with superior 4-NP reduction catalytic activity. Ind. Eng. Chem. Res. 2014, 53, 17976-17980.
[17]
X. Zhang,; Y. C. Guo,; Z. C. Zhang,; J. S. Gao,; C. M. Xu, High performance of carbon nanotubes confining gold nanoparticles for selective hydrogenation of 1, 3-butadiene and cinnamaldehyde. J. Catal. 2012, 292, 213-226.
[18]
C. J. Jin,; J. Han,; F. Y. Chu,; X. X. Wang,; R. Guo, Fe3O4@PANI hybrid shell as a multifunctional support for Au nanocatalysts with a remarkably improved catalytic performance. Langmuir 2017, 33, 4520-4527.
[19]
M. Murdoch,; G. I. N. Waterhouse,; M. A. Nadeem,; J. B. Metson,; M. A. Keane,; R. F. Howe,; J. Llorca,; H. Idriss The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489-492.
[20]
H. Y. Kim,; H. M. Lee,; G. Henkelman, CO oxidation mechanism on CeO2-supported Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 1560-1570.
[21]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[22]
T. W. He,; C. M. Zhang,; L. Zhang,; A. J. Du, Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline. Nano Res. 2019, 12, 1817-1823.
[23]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[24]
Z. C. Zhuang,; Q. Kang,; D. S. Wang,; Y. D. Li, Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[25]
S. Kim,; S. Jee,; K. M. Choi,; D. S. Shin, Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media. Nano Res. 2020, .
[26]
L. F. Zhang,; W. H. Zhao,; W. H. Zhang,; J. Chen,; Z. P. Hu, gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181-1186.
[27]
Z. L. Fang,; B. Bueken,; D. E. De Vos,; R. A. Fischer, Defect-engineered metal-organic frameworks. Angew. Chem., Int. Ed. 2015, 54, 7234-7254.
[28]
H. L. Liu,; L. Chang,; C. H. Bai,; L. Y. Chen,; R. Luque,; Y. W. Li, Controllable encapsulation of “clean” metal clusters within MOFs through kinetic modulation: Towards advanced heterogeneous nanocatalysts. Angew. Chem., Int. Ed. 2016, 55, 5019-5023.
[29]
X. Z. Fang,; Q. C. Shang,; Y. Wang,; L. Jiao,; T. Yao,; Y. F. Li,; Q. Zhang,; Y. Luo,; H. L. Jiang, Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.
[30]
P. F. Ji,; K. Manna,; Z. K. Lin,; X. Y. Feng,; A. Urban,; Y. Song,; W. B. Lin, Single-site cobalt catalysts at new Zr123-O)83-OH)82-OH)6 metal-organic framework nodes for highly active hydrogenation of Nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc. 2017, 139, 7004-7011.
[31]
N. Kornienko,; Y. B. Zhao,; C. S. Kley,; C. H. Zhu,; D. Kim,; S. Lin,; C. J. Chang,; O. M. Yaghi,; P. D. Yang, Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129-14135.
[32]
M. Lammert,; M. T. Wharmby,; S. Smolders,; B. Bueken,; A. Lieb,; K. A. Lomachenko,; D. De Vos,; N. Stock, Cerium-based metal organic frameworks with UiO-66 architecture: Synthesis, properties and redox catalytic activity. Chem. Commun. 2015, 51, 12578-12581.
[33]
H. H. Wei,; K. Huang,; D. Wang,; R. Y. Zhang,; B. H. Ge,; J. Y. Ma,; B. Wen,; S. Zhang,; Q. Y. Li,; M. Lei, et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 2017, 8, 1490.
[34]
B. Li,; J. G. Ma,; P. Cheng, Silica-protection-assisted encapsulation of Cu2O Nanocubes into a metal-organic framework (ZIF-8) to provide a composite catalyst. Angew. Chem., Int. Ed. 2018, 57, 6834-6837.
[35]
L. M. Liu,; Z. J. Chen,; J. J. Wang,; D. L. Zhang,; Y. H. Zhu,; S. L. Ling,; K. W. Huang,; Y. Belmabkhout,; K. Adil,; Y. X. Zhang, et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 2019, 11, 622-628.
[36]
G. Pramanik,; J. Humpolickova,; J. Valenta,; P. Kundu,; S. Bals,; P. Bour,; M. Dracinsky,; P. Cigler, Gold nanoclusters with bright near-infrared photoluminescence. Nanoscale 2018, 10, 3792-3798.
[37]
G. C. Shearer,; S. Chavan,; S. Bordiga,; S. Svelle,; U. Olsbye,; K. P. Lillerud, Defect engineering: Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem. Mater. 2016, 28, 3749-3761.
[38]
Z. W. Zhang,; H. J. Shi,; Q. Wu,; X. H. Bu,; Y. F. Yang,; J. Zhang,; Y. Huang, MOF-derived CeO2/Au@SiO2 hollow nanotubes and their catalytic activity toward 4-nitrophenol reduction. New J. Chem. 2019, 43, 4581-4589.
[39]
S. E. Kondawar,; C. R. Patil,; C. V. Rode, Tandem synthesis of glycidol via transesterification of glycerol with DMC over Ba-mixed metal oxide catalysts. ACS Sustainable Chem. Eng. 2017, 5, 1763-1774.
[40]
R. Kopelent,; J. A. van Bokhoven,; J. Szlachetko,; J. Edebeli,; C. Paun,; M. Nachtegaal,; O. V. Safonova, Catalytically active and spectator Ce3+ in ceria-supported metal catalysts. Angew. Chem., Int. Ed. 2015, 54, 8728-8731.
[41]
H. B. Zhang,; P. F. An,; W. Zhou,; B. Y. Guan,; P. Zhang,; J. C. Dong,; X. W. Lou, Dynamic traction of lattice-confined platinum atoms into Mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 2018, 4, eaao6657.
[42]
X. Wang,; D. P. Liu,; S. Y. Song,; H. J. Zhang, Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864-15872.
[43]
Z. C. Zhang,; Y. Liu,; B. Chen,; Y. Gong,; L. Gu,; Z. X. Fan,; N. L. Yang,; Z. C. Lai,; Y. Chen,; J. Wang, et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 2016, 28, 10282-10286.
[44]
M. Q. Huang,; Y. W. Zhang,; Y. M. Zhou,; C. Zhang,; S. Zhao,; J. S. Fang,; Y. Gao,; X. L. Sheng, Synthesis and characterization of hollow ZrO2-TiO2/Au spheres as a highly thermal stability nanocatalyst. J. Colloid Interface Sci. 2017, 497, 23-32.
[45]
W. L. Shen,; Y. Y. Qu,; X. F. Pei,; S. Z. Li,; S. N. You,; J. W. Wang,; Z. J. Zhang,; J. T. Zhou, Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. J. Hazard. Mater. 2017, 321, 299-306.
[46]
Q. L. Wang,; Y. W. Zhang,; Y. M. Zhou,; Z. W. Zhang,; Y. M. Xu,; C. Zhang,; H. X. Zhang,; X. L. Sheng, Preparation of platinum nanoparticles immobilized on ordered mesoporous Co3O4-CeO2 composites and their enhanced catalytic activity. RSC Adv. 2016, 6, 67173-67183.
[47]
S. Wunder,; F. Polzer,; Y. Lu,; Y. Mei,; M. Ballauff, Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814-8820.
[48]
P. Horcajada,; C. Serre,; M. Vallet-Regí,; M. Sebban,; F. Taulelle,; G. Férey, Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem., Int. Ed. 2006, 45, 5974-5978.
[49]
W. B. Lu,; R. Ning,; X. Y. Qin,; Y. W. Zhang,; G. H. Chang,; S. Liu,; Y. L. Luo,; X. P. Sun, Synthesis of Au nanoparticles decorated graphene oxide nanosheets: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. J. Hazard. Mater. 2011, 197, 320-326.
[50]
F. Ke,; J. F. Zhu,; L. G. Qiu,; X. Jiang, Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance. Chem. Commun. 2013, 49, 1267-1269.
[51]
Y. T. Liao,; J. E. Chen,; Y. Isida,; T. Yonezawa,; W. C. Chang,; S. M. Alshehri,; Y. Yamauchi,; K. C. W. Wu, De Novo synthesis of gold-nanoparticle-embedded, nitrogen-doped Nanoporous carbon nanoparticles (Au@NC) with enhanced reduction ability. ChemCatChem 2016, 8, 502-509.
[52]
S. Chairam,; W. Konkamdee,; R. Parakhun, Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction. J. Saudi Chem. Soc. 2017, 21, 656-663.
[53]
T. Zeng,; X. L. Zhang,; S. H. Wang,; Y. R. Ma,; H. Y. Niu,; Y. Q. Cai, A double-shelled yolk-like structure as an ideal magnetic support of tiny gold nanoparticles for nitrophenol reduction. J. Mater. Chem. A 2013, 1, 11641-11647.
[54]
W. T. Hu,; B. C. Liu,; Q. Wang,; Y. Liu,; Y. X. Liu,; P. Jing,; S. L. Yu,; L. X. Liu,; J. Zhang, A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications. Chem. Commun. 2013, 49, 7596-7598.
[55]
Y. H. Zhu,; J. H. Shen,; K. F. Zhou,; C. Chen,; X. L. Yang,; C. Z. Li, Multifunctional magnetic composite microspheres with in situ growth Au nanoparticles: A highly efficient catalyst system. J. Phys. Chem. C 2011, 115, 1614-1619.
[56]
S. C. Tang,; S. Vongehr,; X. K. Meng, Carbon spheres with controllable silver nanoparticle doping. J. Phys. Chem. C 2010, 114, 977-982.
[57]
Y. W. Yang,; S. Luo,; S. L. Guo,; Y. X. Chao,; H. W. Yang,; Y. X. Li, Synthesis of Au nanoparticles supported on mesoporous N-doped carbon and its high catalytic activity towards hydrogenation of 4-nitrophenol to 4-aminophenol. Int. J. Hydrogen Energy 2017, 42, 29236-29243.
[58]
Y. Shi,; X. L. Zhang,; G. Feng,; X. S. Chen,; Z. H. Lu, Ag-SiO2 nanocomposites with plum-pudding structure as catalyst for hydrogenation of 4-nitrophenol. Ceram. Int. 2015, 41, 14660-14667.
[59]
Y. W. Yang,; Y. Y. Mao,; B. Wang,; X. W. Meng,; J. Han,; C. Wang,; H. W. Yang, Facile synthesis of cubical Co3O4 supported Au nanocomposites with high activity for the reduction of 4-nitrophenol to 4-aminophenol. RSC Adv. 2016, 6, 32430-32433.
[60]
C. Duan,; C. R. Liu,; X. Meng,; W. L. Lu,; Y. H. Ni, Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@MOF-199s nanocatalysts for catalytic reduction of 4-nitrophenol. Appl. Organomet. Chem. 2019, 33, e4865.
[61]
Y. Chi,; J. C. Tu,; M. G. Wang,; X. T. Li,; Z. K. Zhao, One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 2014, 423, 54-59.
[62]
Y. Chi,; Q. Yuan,; Y. J. Li,; J. C. Tu,; L. Zhao,; N. Li,; X. T. Li, Synthesis of Fe3O4@SiO2-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 2012, 383, 96-102.
[63]
Z. W. Zhang,; H. J. Shi,; Q. Wu,; X. H. Bu,; Y. F. Yang,; J. Zhang, Hierarchical structure based on Au nanoparticles and porous CeO2 nanorods: Enhanced activity for catalytic applications. Mater. Lett. 2019, 242, 20-23.
[64]
K. Kuroda,; T. Ishida,; M. Haruta, Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J. Mol. Catal. A Chem. 2009, 298, 7-11.
[65]
H. Y. Liu,; J. Wang,; Z. B. Feng,; Y. M. Lin,; L. Y. Zhang,; D. S. Su, Facile synthesis of Au nanoparticles embedded in an ultrathin hollow graphene nanoshell with robust catalytic performance. Small 2015, 11, 5059-5064.
[66]
Y. Y. Mao,; J. W. Wei,; C. Wang,; Y. Feng,; H. W. Yang,; X. W. Meng, Growth and characterization of sponge-like silver with high catalytic activity for the reduction of p-nitrophenol. Mater. Lett. 2015, 154, 47-50.
File
12274_2020_3138_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 July 2020
Revised: 22 September 2020
Accepted: 22 September 2020
Published: 05 January 2021
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

S. Guo and H. Yuan contribute equally to this study. We thank the supports from National key R&D program of China (No. 2018YFB1107700) and National Natural Science Foundation of China (No. 51906180).

Return