Journal Home > Volume 14 , Issue 4

Two-dimensional (2D) MoS2 with appealing physical properties is a promising candidate for next-generation electronic and optoelectronic devices, where the ultrathin MoS2 is usually laid on or gated by a dielectric oxide layer. The oxide/MoS2 interfaces widely existing in these devices have significant impacts on the carrier transport of the MoS2 channel by diverse interface interactions. Artificial design of the oxide/MoS2 interfaces would provide an effective way to break through the performance limit of the 2D devices but has yet been well explored. Here, we report a high-performance MoS2-based phototransistor with an enhanced photoresponse by interfacing few-layer MoS2 with an ultrathin TiO2 layer. The TiO2 is deposited on MoS2 through the oxidation of an e-beam-evaporated ultrathin Ti layer. Upon a visible-light illumination, the fabricated TiO2/MoS2 phototransistor exhibits a responsivity of up to 2,199 A/W at a gate voltage of 60 V and a detectivity of up to 1.67 × 1013 Jones at a zero-gate voltage under a power density of 23.2 μW/mm2. These values are 4.0 and 4.2 times those of the pure MoS2 phototransistor. The significantly enhanced photoresponse of TiO2/MoS2 device can be attributed to both interface charge transfer and photogating effects. Our results not only provide valuable insights into the interactions at TiO2/MoS2 interface, but also may inspire new approach to develop other novel optoelectronic devices based on 2D layered materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating

Show Author's information Bingxu Liu1Yinghui Sun1( )Yonghuang Wu2Kai Liu2Huanyu Ye1Fangtao Li1Limeng Zhang1Yong Jiang3Rongming Wang1( )
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Two-dimensional (2D) MoS2 with appealing physical properties is a promising candidate for next-generation electronic and optoelectronic devices, where the ultrathin MoS2 is usually laid on or gated by a dielectric oxide layer. The oxide/MoS2 interfaces widely existing in these devices have significant impacts on the carrier transport of the MoS2 channel by diverse interface interactions. Artificial design of the oxide/MoS2 interfaces would provide an effective way to break through the performance limit of the 2D devices but has yet been well explored. Here, we report a high-performance MoS2-based phototransistor with an enhanced photoresponse by interfacing few-layer MoS2 with an ultrathin TiO2 layer. The TiO2 is deposited on MoS2 through the oxidation of an e-beam-evaporated ultrathin Ti layer. Upon a visible-light illumination, the fabricated TiO2/MoS2 phototransistor exhibits a responsivity of up to 2,199 A/W at a gate voltage of 60 V and a detectivity of up to 1.67 × 1013 Jones at a zero-gate voltage under a power density of 23.2 μW/mm2. These values are 4.0 and 4.2 times those of the pure MoS2 phototransistor. The significantly enhanced photoresponse of TiO2/MoS2 device can be attributed to both interface charge transfer and photogating effects. Our results not only provide valuable insights into the interactions at TiO2/MoS2 interface, but also may inspire new approach to develop other novel optoelectronic devices based on 2D layered materials.

Keywords: MoS2, heterojunction, photodetector, charge injection, photocurrent

References(80)

[1]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[2]
F. N. Xia,; H. Wang,; D. Xiao,; M. Dubey,; A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.
[3]
S. B. Desai,; S. R. Madhvapathy,; A. B. Sachid,; J. P. Llinas,; Q. X. Wang,; G. H. Ahn,; G. Pitner,; M. J. Kim,; J. Bokor,; C. M. Hu, et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99-102.
[4]
J. R. Schaibley,; H. Y. Yu,; G. Clark,; P. Rivera,; J. S. Ross,; K. L. Seyler,; W. Yao,; X. D. Xu, Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.
[5]
J. L. Du,; Q. L. Liao,; M. Y. Hong,; B. S. Liu,; X. K. Zhang,; H. H. Yu,; J. K. Xiao,; L. Gao,; F. F. Gao,; Z. Kang, et al. Piezotronic effect on interfacial charge modulation in mixed-dimensional van der Waals heterostructure for ultrasensitive flexible photodetectors. Nano Energy 2019, 58, 85-93.
[6]
Z. X. Wang,; F. Wang,; L. Yin,; Y. Huang,; K. Xu,; F. M. Wang,; X. Y. Zhan,; J. He, Electrostatically tunable lateral MoTe2 p-n junction for use in high-performance optoelectronics. Nanoscale 2016, 8, 13245-13250.
[7]
Y. H. Wang,; Z. Q. He,; J. B. Zhang,; H. Liu,; X. B. Lai,; B. Y. Liu,; Y. B. Chen,; F. P. Wang,; L. W. Zhang, UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface. Nano Res. 2020, 13, 358-365.
[8]
B. Radisavljevic,; A. Radenovic,; J. Brivio,; V. Giacometti,; A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[9]
F. Y. Liao,; Y. C. Sheng,; Z. X. Guo,; H. W. Tang,; Y. Wang,; L. Y. Zong,; X. Y. Chen,; A. Riaud,; J. H. Zhu,; Y. F. Xie, et al. MoS2 dual- gate transistors with electrostatically doped contacts. Nano Res. 2019, 12, 2515-2519.
[10]
O. Lopez-Sanchez,; D. Lembke,; M. Kayci,; A. Radenovic,; A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.
[11]
T. Noh,; H. S. Shin,; C. Seo,; J. Y. Kim,; J. Youn,; J. Kim,; K. S. Lee,; J. Joo, Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots. Nano Res. 2019, 12, 405-412.
[12]
M. L. Tsai,; S. H. Su,; J. K. Chang,; D. S. Tsai,; C. H. Chen,; C. I. Wu,; L. J. Li,; L. J. Chen,; J. H. He, Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317-8322.
[13]
S. Das,; H. Y. Chen,; A. V. Penumatcha,; J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.
[14]
C. Kim,; I. Moon,; D. Lee,; M. S. Choi,; F. Ahmed,; S. Nam,; Y. Cho,; H. J. Shin,; S. Park,; W. J. Yoo, Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588-1596.
[15]
M. S. Kim,; S. Roy,; J. Lee,; B. G. Kim,; H. Kim,; J. H. Park,; S. J. Yun,; G. H. Han,; J. Y. Leem,; J. Kim, Enhanced light emission from monolayer semiconductors by forming heterostructures with ZnO thin films. ACS Appl. Mater. Interfaces 2016, 8, 28809-28815.
[16]
L. Guo,; Z. Yang,; K. Marcus,; Z. Li,; B. Luo,; L. Zhou,; X. Wang,; Y. Du,; Y. Yang, MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ. Sci. 2018, 11, 106-114.
[17]
S. Ghatak,; A. N. Pal,; A. Ghosh, Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707-7712.
[18]
E. Z. Zhang,; W. Y. Wang,; C. Zhang,; Y. B. Jin,; G. D. Zhu,; Q. Q. Sun,; D. W. Zhang,; P. Zhou,; F. X. Xiu, Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612-619.
[19]
B. Radisavljevic,; A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815-820.
[20]
S. L. Li,; K. Wakabayashi,; Y. Xu,; S. Nakaharai,; K. Komatsu,; W. W. Li,; Y. F. Lin,; A. Aparecido-Ferreira,; K. Tsukagoshi, Thickness- dependent interfacial Coulomb scattering in atomically thin field- effect transistors. Nano Lett. 2013, 13, 3546-3552.
[21]
F. Xue,; L. B. Chen,; J. Chen,; J. B. Liu,; L. F. Wang,; M. X. Chen,; Y. K. Pang,; X. N. Yang,; G. Y. Gao,; J. Y. Zhai, et al. p-type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 2016, 28, 3391-3398.
[22]
Y. H. Sun,; R. M. Wang,; K. Liu, Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications. Appl. Phys. Rev. 2017, 4, 011301.
[23]
H. Luo,; B. L. Wang,; E. Z. Wang,; X. W. Wang,; Y. F. Sun,; Q. Q. Li,; S. S. Fan,; C. Cheng,; K. Liu, Phase-transition modulated, high-performance dual-mode photodetectors based on WSe2/VO2 heterojunctions. Appl. Phys. Rev. 2019, 6, 041407.
[24]
K. Xu,; Y. Huang,; B. Chen,; Y. Xia,; W. Lei,; Z. X. Wang,; Q. S. Wang,; F. Wang,; L. Yin,; J. He, Toward high-performance top-gate ultrathin HfS2 field-effect transistors by interface engineering. Small 2016, 12, 3106-3111.
[25]
J. H. Na,; M. K. Joo,; M. Shin,; J. Huh,; J. S. Kim,; M. X. Piao,; J. E. Jin,; H. K. Jang,; H. J. Choi,; J. H. Shim, et al. Low-frequency noise in multilayer MoS2 field-effect transistors: The effect of high-k passivation. Nanoscale 2014, 6, 433-441.
[26]
Y. Pak,; W. Park,; S. Mitra,; A. A. Sasikala Devi,; K. Loganathan,; Y. Kumaresan,; Y. Kim,; B. Cho,; G. Y. Jung,; M. M. Hussain, et al. Enhanced performance of MoS2 photodetectors by inserting an ALD-processed TiO2 interlayer. Small 2018, 14, 1703176.
[27]
B. S. Liu,; Q. L. Liao,; X. K. Zhang,; J. L. Du,; Y. Ou,; J. K. Xiao,; Z. Kang,; Z. Zhang,; Y. Zhang, Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057-9066.
[28]
K. K. Paul,; L. P. L. Mawlong,; P. K. Giri, Trion-inhibited strong excitonic emission and broadband giant photoresponsivity from chemical vapor-deposited monolayer MoS2 grown in situ on TiO2 nanostructure. ACS Appl. Mater. Interfaces 2018, 10, 42812-42825.
[29]
Y. J. Yuan,; Z. J. Ye,; H. W. Lu,; B. Hu,; Y. H. Li,; D. Q. Chen,; J. S. Zhong,; Z. T. Yu,; Z. G. Zou, Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catal. 2015, 6, 532-541.
[30]
S. Bai,; L. M. Wang,; X. Y. Chen,; J. T. Du,; Y. J. Xiong, Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co- catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175-183.
[31]
Y. Y. Zhu,; Q. Ling,; Y. F. Liu,; H. Wang,; Y. F. Zhu, Photocatalytic H2 evolution on MoS2-TiO2 catalysts synthesized via mechanochemistry. Phys. Chem. Chem. Phys. 2015, 17, 933-940.
[32]
Y. H. Tan,; K. Yu,; J. Z. Li,; H. Fu,; Z. Q. Zhu, MoS2@ZnO nano- heterojunctions with enhanced photocatalysis and field emission properties. J. Appl. Phys. 2014, 116, 064305.
[33]
X. R. Gan,; D. Y. Lei,; R. Q. Ye,; H. M. Zhao,; K. Y. Wong, Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Res. 2020, .
[34]
N. Kaushik,; D. Karmakar,; A. Nipane,; S. Karande,; S. Lodha, Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 2016, 8, 256-263.
[35]
C. Lee,; H. G. Yan,; L. E. Brus,; T. F. Heinz,; J. Hone,; S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.
[36]
H. Li,; Q. Zhang,; C. C. R. Yap,; B. K. Tay,; T. H. T. Edwin,; A. Olivier,; D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
[37]
B. Chakraborty,; A. Bera,; D. V. S. Muthu,; S. Bhowmick,; U. V. Waghmare,; A. K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.
[38]
Y. A. Moe,; Y. H. Sun,; H. Y. Ye,; K. Liu,; R. M. Wang, Probing evolution of local strain at MoS2-metal boundaries by surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2018, 10, 40246-40254.
[39]
Y. H. Sun,; Y. A. Moe,; Y. Y. Xu,; Y. F. Sun,; X. W. Wang,; F. T. Li,; K. Liu,; R. M. Wang, Evolution of local strain in Ag-deposited monolayer MoS2 modulated by interface interactions. Nanoscale 2019, 11, 22432-22439.
[40]
Y. H. Lee,; X. Q. Zhang,; W. J. Zhang,; M. T. Chang,; C. T. Lin,; K. D. Chang,; Y. C. Yu,; J. T. W. Wang,; C. S. Chang,; L. J. Li, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.
[41]
Y. H. Sun,; H. F. Zhao,; D. Zhou,; Y. C. Zhu,; H. Y. Ye,; Y. A. Moe,; R. M. Wang, Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution. Nano Res. 2019, 12, 947-954.
[42]
R. M. Wang,; O. Dmitrieva,; M. Farle,; G. Dumpich,; M. Acet,; S. Mejia- Rosales,; E. Perez-Tijerina,; M. J. Yacaman,; C. Kisielowski, FePt icosahedra with magnetic cores and catalytic shells. J. Phys. Chem. C 2009, 113, 4395-4400.
[43]
S. L. Wang,; X. Luo,; X. Zhou,; Y. Zhu,; X. Chi,; W. Chen,; K. Wu,; Z. Liu,; S. Y. Quek,; G. Q. Xu, Fabrication and properties of a free- standing two-dimensional titania. J. Am. Chem. Soc. 2017, 139, 15414-15419.
[44]
Y. Lu,; W. J. Yin,; K. L. Peng,; K. Wang,; Q. Hu,; A. Selloni,; F. R. Chen,; L. M. Liu,; M. L. Sui, Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat. Commun. 2018, 9, 2752.
[45]
S. McDonnell,; C. Smyth,; C. L. Hinkle,; R. M. Wallace, MoS2- titanium contact interface reactions. ACS Appl. Mater. Interfaces 2016, 8, 8289-8294.
[46]
Y. Wang,; H. J. Sun,; S. J. Tan,; H. Feng,; Z. W. Cheng,; J. Zhao,; A. D. Zhao,; B. Wang,; Y. Luo,; J. L. Yang, et al. Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface. Nat. Commun. 2013, 4, 2214.
[47]
H. H. Liu,; Y. Li,; M. M. Xiang,; H. L. Zeng,; X. Shao, Single-layered MoS2 directly grown on rutile TiO2(110) for enhanced interfacial charge transfer. ACS Nano 2019, 13, 6083-6089.
[48]
J. Y. Zheng,; Y. Lyu,; R. L. Wang,; C. Xie,; H. J. Zhou,; S. P. Jiang,; S. Y. Wang, Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat. Commun. 2018, 9, 3572.
[49]
A. Ermolieff,; P. Bernard,; S. Marthon,; P. Wittmer, Nitridation of polycrystalline titanium as studied by in situ angle-resolved X-ray photoelectron spectroscopy. Surf. Interface Anal. 1988, 11, 563-568.
[50]
T. Zehnder,; J. Patscheider, Nanocomposite TiC/a-C: H hard coatings deposited by reactive PVD. Surf. Coat. Technol. 2000, 133, 138-144.
[51]
K. Sun,; Q. Zhang,; D. C. Bock,; X. Tong,; D. Su,; A. C. Marschilok,; K. J. Takeuchi,; E. S. Takeuchi,; H. Gan, Interaction of TiS2 and sulfur in Li-S battery system. J. Electrochem. Soc. 2017, 164, A1291-A1297.
[52]
K. S. Novoselov,; D. Jiang,; F. Schedin,; T. J. Booth,; V. V. Khotkevich,; S. V. Morozov,; A. K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[53]
Y. Liu,; J. Guo,; E. B. Zhu,; L. Liao,; S. J. Lee,; M. N. Ding,; I. Shakir,; V. Gambin,; Y. Huang,; X. F. Duan, Approaching the Schottky- Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[54]
S. Y. Li,; X. Q. Chen,; F. M. Liu,; Y. F. Chen,; B. Y. Liu,; W. J. Deng,; B. X. An,; F. H. Chu,; G. Q. Zhang,; S. L. Li, et al. Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping. ACS Appl. Mater. Interfaces 2019, 11, 11636-11644.
[55]
J. Y. Wu,; Y. T. Chun,; S. P. Li,; T. Zhang,; J. Z. Wang,; P. K. Shrestha,; D. P. Chu, Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880.
[56]
J. O. Island,; S. I. Blanter,; M. Buscema,; H. S. J. van der Zant,; A. Castellanos-Gomez, Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 2015, 15, 7853-7858.
[57]
F. Wang,; Z. X. Wang,; L. Yin,; R. Q. Cheng,; J. J. Wang,; Y. Wen,; T. A. Shifa,; F. M. Wang,; Y. Zhang,; X. Y. Zhan, et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296-6341.
[58]
H. L. Wu,; H. N. Si,; Z. H. Zhang,; Z. Kang,; P. W. Wu,; L. X. Zhou,; S. C. Zhang,; Z. Zhang,; Q. L. Liao,; Y. Zhang, All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 2018, 5, 1801219.
[59]
S. Thunich,; L. Prechtel,; D. Spirkoska,; G. Abstreiter,; A. Fontcuberta i Morral,; A. W. Holleitner, Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett. 2009, 95, 083111.
[60]
Q. S. Guo,; A. Pospischil,; M. Bhuiyan,; H. Jiang,; H. Tian,; D. Farmer,; B. C. Deng,; C. Li,; S. J. Han,; H. Wang, et al. Black phosphorus mid- infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.
[61]
J. Li,; Z. X. Wang,; Y. Wen,; J. W. Chu,; L. Yin,; R. Q. Cheng,; L. Lei,; P. He,; C. Jiang,; L. P. Feng, et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 2018, 28, 1706437.
[62]
M. Buscema,; J. O. Island,; D. J. Groenendijk,; S. I. Blanter,; G. A. Steele,; H. S. J. van der Zant,; A. Castellanos-Gomez, Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691-3718.
[63]
C. Xie,; C. Mak,; X. M. Tao,; F. Yan, Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1603886.
[64]
H. H. Fang,; W. D. Hu, Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.
[65]
Q. L. Li,; Y. Li,; J. Gao,; S. D. Wang,; X. H. Sun, High performance single In2Se3 nanowire photodetector. Appl. Phys. Lett. 2011, 99, 243105.
[66]
E. Z. Zhang,; Y. B. Jin,; X. Yuan,; W. Y. Wang,; C. Zhang,; L. Tang,; S. S. Liu,; P. Zhou,; W. D. Hu,; F. X. Xiu, ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076-4082.
[67]
W. Choi,; M. Y. Cho,; A. Konar,; J. H. Lee,; G. B. Cha,; S. C. Hong,; S. Kim,; J. Kim,; D. Jena,; J. Joo, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832-5836.
[68]
D. S. Tsai,; K. K. Liu,; D. H. Lien,; M. L. Tsai,; C. F. Kang,; C. A. Lin,; L. J. Li,; J. H. He, Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905-3911.
[69]
W. J. Zhang,; J. K. Huang,; C. H. Chen,; Y. H. Chang,; Y. J. Cheng,; L. J. Li, High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456-3461.
[70]
N. J. Huo,; J. Kang,; Z. M. Wei,; S. S. Li,; J. B. Li,; S. H. Wei, Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025-7031.
[71]
G. H. Shin,; C. Park,; K. J. Lee,; H. J. Jin,; S. Y. Choi, Ultrasensitive phototransistor based on WSe2-MoS2 van der Waals heterojunction. Nano Lett. 2020, 20, 5741-5748.
[72]
H. S. Lee,; S. W. Min,; Y. G. Chang,; M. K. Park,; T. Nam,; H. Kim,; J. H. Kim,; S. Ryu,; S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695-3700.
[73]
S. L. Li,; K. Komatsu,; S. Nakaharai,; Y. F. Lin,; M. Yamamoto,; X. F. Duan,; K. Tsukagoshi, Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers. ACS Nano 2014, 8, 12836-12842.
[74]
M. M. Furchi,; D. K. Polyushkin,; A. Pospischil,; T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165-6170.
[75]
S. Ghatak,; A. Ghosh, Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor. Appl. Phys. Lett. 2013, 103, 122103.
[76]
J. Y. J. Lin,; A. M. Roy,; A. Nainani,; Y. Sun,; K. C. Saraswat, Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height. Appl. Phys. Lett. 2011, 98, 092113.
[77]
J. Nowotny,; T. Bak,; M. K. Nowotny,; L. R. Sheppard, Titanium dioxide for solar-hydrogen II. Defect chemistry. Int. J. Hydrogen Energy 2007, 32, 2630-2643.
[78]
M. K. Nowotny,; P. Bogdanoff,; T. Dittrich,; S. Fiechter,; A. Fujishima,; H. Tributsch, Observations of p-type semiconductivity in titanium dioxide at room temperature. Mater. Lett. 2010, 64, 928-930.
[79]
Y. Nakano,; T. Morikawa,; T. Ohwaki,; Y. Taga, Origin of visible- light sensitivity in N-doped TiO2 films. Chem. Phys. 2007, 339, 20-26.
[80]
F. C. Marques,; J. J. Jasieniak, Ionization potential and electron attenuation length of titanium dioxide deposited by atomic layer deposition determined by photoelectron spectroscopy in air. Appl. Surf. Sci. 2017, 422, 504-508.
File
12274_2020_3137_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 July 2020
Revised: 22 September 2020
Accepted: 22 September 2020
Published: 03 November 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFA0703700), the National Natural Science Foundation of China (Nos. 11974041 and 51971025), 111 Project (No. B170003), and the Fundamental Research Funds for the Central Universities (No. FRF-BD- 19-016A).

Return