[1]
Luciani, S.; Cabanes, A.; Prieto-Lara, E.; Gawryszewski, V. Cervical and female breast cancers in the Americas: Current situation and opportunities for action. Bull. World Health Organ. 2013, 91, 640-649.
[2]
Ginsburg, O.; Bray, F.; Coleman, M. P.; Vanderpuye, V.; Eniu, A.; Kotha, S. R.; Sarker, M.; Huong, T. T.; Allemani, C.; Dvaladze, A. et al. The global burden of women’s cancers: A grand challenge in global health. Lancet 2017, 389, 847-860.
[3]
Torre, L. A.; Islami, F.; Siegel, R. L.; Ward, E. M.; Jemal, A. Global cancer in women: Burden and trends. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 444-457.
[4]
Tsu, V. D.; Jeronimo, J.; Anderson, B. O. Why the time is right to tackle breast and cervical cancer in low-resource settings. Bull. World Health Organ. 2013, 91, 683-690.
[5]
Liu, M. H.; Guo, H. B.; Liu, H. B.; Zhang, Z. Y.; Chi, C. W.; Hui, H.; Dong, D.; Hu, Z. H.; Tian, J. In vivo pentamodal tomographic imaging for small animals. Biomed. Opt. Express 2017, 8, 1356-1371.
[6]
Goel, S.; Ferreira, C. A.; Chen, F.; Ellison, P. A.; Siamof, C. M.; Barnhart, T. E.; Cai, W. B. Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy. Adv. Mater. 2018, 30, 1704367.
[7]
Rieffel, J.; Chen, F.; Kim, J.; Chen, G. Y.; Shao, W.; Shao, S.; Chitgupi, U.; Hernandez, R.; Graves, S. A.; Nickles, R. J. et al. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv. Mater. 2015, 27, 1785-1790.
[8]
Miranda, D.; Carter, K.; Luo, D. D.; Shao, S.; Geng, J. M.; Li, C. N.; Chitgupi, U.; Turowski, S. G.; Li, N. S.; Atilla-Gokcumen, E. A. et al. Multifunctional liposomes for image-guided intratumoral chemo- phototherapy. Adv. Healthc. Mater. 2017, 6, 1700253.
[9]
Grodzinski, P.; Kircher, M.; Goldberg, M.; Gabizon, A. Integrating nanotechnology into cancer care. ACS Nano 2019, 13, 7370-7376.
[10]
Lusic, H.; Grinstaff, M. W. X-ray-computed tomography contrast agents. Chem. Rev. 2013, 113, 1641-1666.
[11]
Lee, N.; Yoo, D.; Ling, D. S.; Cho, M. H.; Hyeon, T.; Cheon, J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 2015, 115, 10637-10689.
[12]
Yankeelov, T. E.; Mankoff, D. A.; Schwartz, L. H.; Lieberman, F. S.; Buatti, J. M.; Mountz, J. M.; Erickson, B. J.; Fennessy, F. M. M.; Huang, W.; Kalpathy-Cramer, J. et al. Quantitative imaging in cancer clinical trials. Clin. Cancer Res. 2016, 22, 284-290.
[13]
O’Connor, J. P. B.; Aboagye, E. O.; Adams, J. E.; Aerts, H. J. W. L.; Barrington, S. F.; Beer, A. J.; Boellaard, R.; Bohndiek, S. E.; Brady, M.; Brown, G. et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 2017, 14, 169-186.
[14]
Yu, X. J.; Li, A.; Zhao, C. Z.; Yang, K.; Chen, X. Y.; Li, W. W. Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano 2017, 11, 3990-4001.
[15]
Frangioni, J. V. New technologies for human cancer imaging. J. Clin. Oncol. 2018, 26, 4012-4021.
[16]
Smith, A. M.; Mancini, M. C.; Nie, S. M. Second window for in vivo imaging. Nat. Nanotechnol. 2019, 4, 710-711.
[17]
Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773-780.
[18]
Sun, C. X.; Li, B. H.; Zhao, M. Y.; Wang, S. F.; Lei, Z. H.; Lu, L. F.; Zhang, H. X.; Feng, L. S.; Dou, C. R.; Yin, D. R. et al. J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J. Am. Chem. Soc. 2019, 141, 19221-19225.
[19]
Kang, Y. W.; Yu, X. J.; Fan, X. Y.; Aodenggerile, Zhao, S. Z.; Tu, C. L.; Yan, Z. Q.; Wang, R. B.; Li, W. W.; Qiu, H. B. Tetramodal imaging and synergistic cancer radio-chemotherapy enabled by multiple component-encapsulated zeolitic imidazolate frameworks. ACS Nano 2020, 14, 4336-4351.
[20]
Jiang, Y. Y.; Upputuri, P. K.; Xie, C.; Zeng, Z. L.; Sharma, A.; Zhen, X.; Li, J. C.; Huang, J. G.; Pramanik, M.; Pu, K. Y. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 2019, 31, 1808166.
[21]
He, S. Q.; Song, J.; Qu, J. L.; Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: Design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 2018, 47, 4258-4278.
[22]
Kantamneni, H.; Zevon, M.; Donzanti, M. J.; Zhao, X. Y.; Sheng, Y.; Barkund, S. R.; McCabe, L. H.; Banach-Petrosky, W.; Higgins, L. M.; Ganesan, S. et al. Surveillance nanotechnology for multi-organ cancer metastases. Nat. Biomed. Eng. 2017, 1, 993-1003.
[23]
Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Deliv. Rev. 2013, 65, 1951-1963.
[24]
Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723-730.
[25]
Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem., Int. Ed. 2012, 51, 9818-9821.
[26]
Zhang, M. X.; Yue, J. Y.; Cui, R.; Ma, Z. R.; Wan, H.; Wang, F. F.; Zhu, S. J.; Zhou, Y.; Kuang, Y.; Zhong, Y. T. et al. Bright quantum dots emitting at ~ 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl. Acad. Sci. USA 2018, 115, 6590-6595.
[27]
Yang, T.; Tang, Y. A.; Liu, L.; Lv, X. Y.; Wang, Q. L.; Ke, H. T.; Deng, Y. B.; Yang, H.; Yang, X. L.; Liu, G. et al. Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 2017, 11, 1848-1857.
[28]
Zhu, S. J.; Tian, R.; Antaris, A. L.; Chen, X. Y.; Dai, H. J. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 2019, 31, 1900321.
[29]
Li, B. H.; Lu, L. F.; Zhao, M. Y.; Lei, Z. H.; Zhang, F. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew. Chem., Int. Ed. 2018, 57, 7483-7487.
[30]
Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235-242.
[31]
Chen, C.; Ni, X.; Jia, S.; Liang, Y.; Wu, X.; Kong, D.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904914.
[32]
Chen, C.; Ou, H.; Liu, R.; Ding, D. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics. Adv. Mater. 2020, 32, 1806331.
[33]
Ni, X.; Zhang, X.; Duan, X.; Zheng, H. L.; Xue, X. S.; Ding, D. Near-infrared afterglow luminescent aggregation-Induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image- guided cancer surgery. Nano Lett. 2019, 19, 318-330.
[34]
Guo, B.; Chen, J. Q.; Chen, N. B.; Middha, E.; Xu, S. D.; Pan, Y. T.; Wu, M.; Li, K.; Liu, C. B.; Liu, B. High-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent. Adv. Mater. 2019, 31, 1808355.
[35]
Hong, G. S.; Zou, Y. P.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X. D.; Chen, C. X.; Liu, B.; He, Y. H. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 2014, 5, 4206.
[36]
Zhang, H. X.; Fan, Y.; Pei, P.; Sun, C. X.; Lu, L. F.; Zhang, F. Tm3+- sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding. Angew. Chem., Int. Ed. 2019, 58, 10153-10157.
[37]
Wang, S. F.; Liu, L.; Fan, Y.; El-Toni, A. M.; Alhoshan, M. S.; Li, D. D.; Zhang, F. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission. Nano Lett. 2019, 19, 2418-2427.
[38]
Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.
[39]
Chen, G. Y.; Ohulchanskyy, T. Y.; Liu, S.; Law, W. C.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969-2977.
[40]
Lammers, T.; Ferrari, M. The success of nanomedicine. Nano Today 2020, 31, 100853.
[41]
D’Mello, S. R.; Cruz, C. N.; Chen, M. L.; Kapoor, M.; Lee, S. L.; Tyner, K. M. The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 2017, 12, 523-529.
[42]
Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373-2387.
[43]
Bonvalot, S.; Rutkowski, P. L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M. P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): A multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 2019, 20, 1148-1159.
[44]
Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed. 2014, 53, 12086-12090.
[45]
Naczynski, D. J.; Sun, C.; Türkcan, S.; Jenkins, C.; Koh, A. L.; Ikeda, D.; Pratx, G.; Xing, L. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett. 2015, 15, 96-102.
[46]
Dang, X. N.; Gu, L.; Qi, J. F.; Correa, S.; Zhang, G. R.; Belcher, A. M.; Hammond, P. T. Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc. Natl. Acad. Sci. USA 2016, 113, 5179-5184.
[47]
Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the down- shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 2017, 8, 737.
[48]
Ding, F.; Zhan, Y. B.; Lu, X. J.; Sun, Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem. Sci. 2018, 9, 4370-4380.
[49]
Yu, X. J.; Liu, X. Y.; Wu, W. J.; Yang, K.; Mao, R. H.; Ahmad, F.; Chen, X. Y.; Li, W. W. CT/MRI-guided synergistic radiotherapy and X-ray inducible photodynamic therapy using Tb-doped Gd-W- nanoscintillators. Angew. Chem., Int. Ed. 2019, 58, 2017-2022.
[50]
Guo T.; Lin, Y.; Zhang, W. J.; Hong, J. S.; Lin, R. H.; Wu, X. P.; Li, J.; Lu, C. H.; Yang, H. H. High-efficiency X-ray luminescence in Eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization. Nanoscale 2018, 10, 1607-1612.
[51]
Hudson, D. E.; Hudson, D. O.; Wininger, J. M.; Richardson, B. D. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed. Laser Surg. 2013, 31, 163-168.
[52]
Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Y. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049-9052.
[53]
Zhong, Y. T.; Tian, G.; Gu, Z. J.; Yang, Y. J.; Gu, L.; Zhao, Y. L.; Ma, Y.; Yao, J. N. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles. Adv. Mater. 2014, 26, 2831-2837.
[54]
Kotagiri, N.; Sudlow, G. P.; Akers, W. J.; Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol. 2015, 10, 370-379.
[55]
Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.; Guan, X.; Han, S.; Liang, L.; Yi, Z. et. al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88-93.
[56]
Nashed, R.; Alamgir, F. M.; Jang, S. S.; Ismail, Y.; El-Sayed, M. A.; Allam, N. K. Bandgap bowing in Ta-W-O system for efficient solar energy conversion: Insights from density functional theory and X-ray diffraction. Appl. Phys. Lett. 2013, 103, 133905.
[57]
Ye, S.; Song, E. H.; Zhang, Q. Y. Transition metal-involved photon upconversion. Adv. Sci. 2016, 3, 1600302.
[58]
Pernodet, N.; Fang, X. H.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovich, M. Adverse effects of citrate/ gold nanoparticles on human dermal fibroblasts. Small 2006, 2, 766-773.
[59]
Li, M. H.; Sun, X. T.; Zhang, N.; Wang, W.; Yang, Y.; Jia, H. Z.; Liu, W. G. NIR-activated polydopamine-coated carrier-free “nanobomb” for in situ on-demand drug release. Adv. Sci. 2018, 5, 1800155.
[60]
Zhou, J. J.; Xiong, Q. R.; Ma, J. L.; Ren, J. H.; Messersmith, P. B.; Chen, P.; Duan, H. W. Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles: From nanogap engineering to multifunctionality. ACS Nano 2016, 10, 11066-11075.
[61]
Choi, C. K. K.; Chiu, Y. T. E.; Zhuo, X. L.; Liu, Y.; Pak, C. Y.; Liu, X. D.; Tse, Y. L. S.; Wang, J. F.; Choi, C. H. J. Dopamine-mediated assembly of citrate-capped plasmonic nanoparticles into stable core-shell nanoworms for intracellular applications. ACS Nano 2019, 13, 5864-5884.
[62]
Swierczewska, M.; Cho, K. Y.; Mertz, E. L.; Huang, X. L.; Zhang, F.; Zhu, L.; Yoon, H. Y.; Park, J. H.; Bhirde, A.; Lee, S. et al. A facile, one-step nanocarbon functionalization for biomedical applications. Nano Lett. 2012, 12, 3613-3620.
[63]
Zhou, J.; Li, M. H.; Hou, Y. H.; Luo, Z.; Chen, Q. F.; Cao, H. X.; Huo, R. L.; Xue, C. C.; Sutrisno, L.; Hao, L. et al. Engineering of a nanosized biocatalyst for combined tumor starvation and low- temperature photothermal therapy. ACS Nano 2018, 12, 2858-2872.
[64]
Kim, S.; Jang, Y.; Jang, L. K.; Sunwoo, S. H.; Kim, T. I.; Cho, S. W.; Lee, J. Y. Electrochemical deposition of dopamine-hyaluronic acid conjugates for anti-biofouling bioelectrodes. J. Mater. Chem. B 2017, 5, 4507-4513.
[65]
Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834-3838.
[66]
Rocha, U.; Kumar, K. U.; Jacinto, C.; Villa, I.; Sanz-Rodríguez, F.; del Carmen Iglesias de la Cruz M.; Juarranz, A.; Carrasco, E.; van Veggel, F. C. J. M.; Bovero, E.; Solé, J. G. et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 2014, 10, 1141-1154.
[67]
Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Lanthanide probes for bioresponsive imaging. Chem. Rev. 2014, 114, 4496-4539.
[68]
Kohane, D. S.; Langer, R. Biocompatibility and drug delivery systems. Chem. Sci. 2010, 1, 441-446.
[69]
Rieffel, J.; Chitgupi, U.; Lovell, J. F. Recent advances in higher-order, multimodal, biomedical imaging agents. Small 2015, 11, 4445-4461.
[70]
Hyafil, F.; Cornily, J. C.; Feig, J. E.; Gordon, R.; Vucic, E.; Amirbekian, V.; Fisher, E. A.; Fuster, V.; Feldman, L. J.; Fayad, Z. A. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 2007, 13, 636-641.
[71]
Cho, N. H.; Cheong, T. C.; Min, J. H.; Wu, J. H.; Lee, S. J.; Kim, D.; Yang, J. S.; Kim, S.; Kim, Y. K.; Seong, S. Y. A multifunctional core- shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 2011, 6, 675-682.
[72]
Wang, X.; Guo, Z.; Zhang, C. Y.; Zhu, S.; Li, L. L.; Gu, Z. J.; Zhao, Y. L. Ultrasmall BiOI quantum dots with efficient renal clearance for enhanced radiotherapy of cancer. Adv. Sci. 2020, 7, 1902561.
[73]
Chen, X. F.; Song, J. B.; Chen, X. Y.; Yang, H. H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073-3101.
[74]
Ni, D. L.; Zhang, J. W.; Wang, J.; Hu, P.; Jin, Y. Y.; Tang, Z. M.; Yao, Z. W.; Bu, W. B.; Shi, J. L. Oxygen vacancy enables markedly enhanced magnetic resonance imaging-guided photothermal therapy of a Gd3+-doped contrast agent. ACS Nano 2017, 11, 4256-4264.