Journal Home > Volume 14 , Issue 4

Discovery and development of new sustainable photothermal materials with tunable light absorption spectra play a key role in solar energy harvesting and conversion. One possible solution to this quest is to check nature as a source of matters or inspiration. Inspired by the formation of tea stains, a unique class of dark stain materials generated by the interfacial reaction between tea polyphenols and metal substance, we reported the facile preparation and screening of a series of photothermal nanocoating layers via the metal ion (i.e. Cu(II),Fe(III), Ni(II), Zn(II)) promoted in situ polymerization of typical phenolic moieties of tea polyphenols (i.e., catechol and pyrogallol). It was found that those resulting metal-polyphenolic nanocoatings showed various promising features, such as high blackness and strong adhesion, excellent and tunable light absorption properties, good hydrophilicity and long-term stability. We further fabricated the photothermal composite devices by in situ formation of metal-polyphenolic nanocoatings on pristine silks for solar desalination, which demonstrated promising durable evaporation behaviors with excellent evaporation rates and steam generation efficiencies. We believe that this work could provide more opportunities towards new types of bio-inspired and sustainable photothermal nanomaterials for solar energy harvesting applications such as water desalination.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tea stain-inspired solar energy harvesting polyphenolic nanocoatings with tunable absorption spectra

Show Author's information Lu Yang1,§Yuan Zou1,§Wei Xia1Haotian Li1Xinyu He1Yi Zhou1Xianhu Liu2Chaoqun Zhang3,4Yiwen Li1( )
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, 483 Wushan Road, Guangzhou 510642, China

§ Lu Yang and Yuan Zou contribute equally to this work.

Abstract

Discovery and development of new sustainable photothermal materials with tunable light absorption spectra play a key role in solar energy harvesting and conversion. One possible solution to this quest is to check nature as a source of matters or inspiration. Inspired by the formation of tea stains, a unique class of dark stain materials generated by the interfacial reaction between tea polyphenols and metal substance, we reported the facile preparation and screening of a series of photothermal nanocoating layers via the metal ion (i.e. Cu(II),Fe(III), Ni(II), Zn(II)) promoted in situ polymerization of typical phenolic moieties of tea polyphenols (i.e., catechol and pyrogallol). It was found that those resulting metal-polyphenolic nanocoatings showed various promising features, such as high blackness and strong adhesion, excellent and tunable light absorption properties, good hydrophilicity and long-term stability. We further fabricated the photothermal composite devices by in situ formation of metal-polyphenolic nanocoatings on pristine silks for solar desalination, which demonstrated promising durable evaporation behaviors with excellent evaporation rates and steam generation efficiencies. We believe that this work could provide more opportunities towards new types of bio-inspired and sustainable photothermal nanomaterials for solar energy harvesting applications such as water desalination.

Keywords: metal-polyphenolic nanocoating, polymerization, light absorption, photothermal, solar desalination

References(61)

[1]
X. F. Luo,; C. H. Ma,; Z. J. Chen,; X. Y. Zhang,; N. Niu,; J. Li,; S. X. Liu,; S. J. Li, Biomass-derived solar-to-thermal materials: Promising energy absorbers to convert light to mechanical motion. J. Mater. Chem. A 2019, 7, 4002-4008.
[2]
S. Iamsaard,; S. J. Aßhoff,; B. Matt,; T. Kudernac,; J. J. L. M. Cornelissen,; S. P. Fletcher,; N. Katsonis, Conversion of light into macroscopic helical motion. Nat. Chem. 2014, 6, 229-235.
[3]
M. Morimoto,; M. Irie, A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 2010, 132, 14172-14178.
[4]
H. Y. Ren,; M. Tang,; B. L. Guan,; K. X. Wang,; J. W. Yang,; F. F. Wang,; M. Z. Wang,; J. Y. Shan,; Z. L. Chen,; D. Wei, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.
[5]
Q. S. Jiang,; L. M. Tian,; K. K. Liu,; S. Tadepalli,; R. Raliya,; P. Biswas,; R. R. Naik,; S. Singamaneni, Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 2016, 28, 9400-9407.
[6]
H. Ghasemi,; G. Ni,; A. M. Marconnet,; J. Loomis,; S. Yerci,; N. Miljkovic,; G. Chen, Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.
[7]
O. Neumann,; A. S. Urban,; J. Day,; S. Lal,; P. Nordlander,; N. J. Halas, Solar vapor generation enabled by nanoparticles. ACS Nano 2013, 7, 42-49.
[8]
K. Bae,; G. M. Kang,; S. K. Cho,; W. Park,; K. Kim,; W. J. Padilla, Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.
[9]
L. Zhou,; Y. L. Tan,; J. Y. Wang,; W. C. Xu,; Y. Yuan,; W. S. Cai,; S. N. Zhu,; J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393-398.
[10]
X. Y. Yin,; Y. Zhang,; Q. Q. Guo,; X. B. Cai,; J. F. Xiao,; Z. F. Ding,; J. Yang, Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Appl. Mater. Interfaces 2018, 10, 10998-11007.
[11]
L. B. Zhang,; B. Tang,; J. B. Wu,; R. Y. Li,; P. Wang, Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 2015, 27, 4889-4894.
[12]
Y. C. Wang,; C. Z. Wang,; X. J. Song,; M. H. Huang,; S. K. Megarajan,; S. F. Shaukat,; H. Q. Jiang, Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. J. Mater. Chem. A 2018, 6, 9874-9881.
[13]
Y. Zou,; X. .F Chen,; W. C. Guo,; X. H. Liu,; Y. W. Li, Flexible and robust polyaniline composites for highly efficient and durable solar desalination. ACS Appl. Energy Mater. 2020, 3, 2634-2642.
[14]
P. Yang,; S. Zhang,; N. Zhang,; Y. Wang,; J. Zhong,; X. X. Sun,; Y. Qi,; X. F. Chen,; Z. Li,; Y. W. Li, Tailoring synthetic melanin nanoparticles for enhanced photothermal therapy. ACS Appl. Mater. Interfaces 2019, 11, 42671-42679.
[15]
H. Wang,; C. P. Wang,; Y. Zou,; J. J. Hu,; Y. W. Li,; Y. Y. Cheng, Natural polyphenols in drug delivery systems: Current status and future challenges. Giant 2020‚ 3, 100022.
[16]
Z. Li,; H. T. Li,; J. H. Zhang,; X. H. Liu,; Z. P. Gu,; Y. W. Li, Ultrasmall nanoparticle ROS scavengers based on polyhedral oligomeric silsesquioxanes. Chin. J. Polym. Sci.‚ 2020, 38, 1149-1156.
[17]
P. Yang,; S. Zhang,; X. F. Chen,; X. H. Liu,; Z. Wang,; Y. W. Li, Recent developments in polydopamine fluorescent nanomaterials. Mater. Horiz. 2020‚7, 746-761.
[18]
P. Yang,; Z. P. Gu,; F. Zhu,; Y. W. Li, Structural and functional tailoring of melanin-like polydopamine radical scavengers. CCS Chem. 2020‚ 2, 128-138.
[19]
B. Zhang,; R. J. Yao,; L. H. Li,; M. Y. Li,; L. Yang,; Z. Liang,; H. C. Yu,; H. Zhang,; R. F. Luo,; Y. B. Wang, Bionic tea stain-like, all-nanoparticle coating for biocompatible corrosion protection. Adv. Mater. Interfaces 2019, 6, 1900899.
[20]
Y. Tanizawa,; T. Abe,; K. Yamada, Black tea stain formed on the surface of teacups and pots. Part 1—study on the chemical composition and structure. Food Chem. 2007, 103, 1-7.
[21]
Y. W. Li,; Y. J. Xie,; Z. Wang,; N. Z. Zang,; F. Carniato,; Y. Huang,; C. M. Andolina,; L. R. Parent,; T. B. Ditri,; E. D. Walter, et al. Structure and function of iron-loaded synthetic melanin. ACS Nano 2016, 10, 10186-10194.
[22]
Z. Wang,; Y. Zou,; Y. W. Li,; Y. Y. Cheng, Metal-containing polydopamine nanomaterials: Catalysis, energy, and theranostics. Small 2020, 16, 1907042.
[23]
X. H. Wang,; L. Yang,; P. Yang,; W. C. Guo,; Q. P. Zhang,; X. H. Liu,; Y. W. Li, Metal ion-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation. Sci. China Chem. 2020, 63, 1295-1305.
[24]
Y. Zou,; X. F. Chen,; P. Yang,; G. J. Liang,; Y. Yang,; Z. P. Gu,; Y. W. Li, Regulating the absorption spectrum of polydopamine. Sci. Adv. 2020, 6, eabb4696.
[25]
Q. Dai,; H. M. Geng,; Q. Yu,; J. C. Hao,; J. W. Cui, Polyphenol-based particles for theranostics. Theranostics 2019, 9, 3170-3190.
[26]
T. S. Sileika,; D. G. Barrett,; R. Zhang,; K. H. A. Lau,; P. B. Messersmith, Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chem., Int. Ed. 2013, 52, 10766-10770.
[27]
X. J. Cheng,; M. Y. Li,; H. Wang,; Y. Y. Cheng, All-small-molecule dynamic covalent gels with antibacterial activity by boronate-tannic acid gelation. Chin. Chem. Lett. 2020, 31, 869-874.
[28]
Y. Zou,; T. Wu,; N. Li,; X. T. Guo,; Y. W. Li, Photothermal-enhanced synthetic melanin inks for near-infrared imaging. Polymer 2020, 186, 122042.
[29]
M. Y. Li,; H. Wang,; J. F. Hu,; J. J. Hu,; S. Zhang,; Z. Yang,; Y. W. Li,; Y. Y. Cheng, Smart hydrogels with antibacterial properties built from all natural building blocks. Chem. Mater. 2019, 31, 7678-7685.
[30]
T. Liu,; M. K. Zhang,; W. L. Liu,; X. Zeng,; X. L. Song,; X. Q. Yang,; X. Z. Zhang,; J. Feng, Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano 2018, 12, 3917-3927.
[31]
S. C. Liu,; J. M. Pan,; J. X. Liu,; Y. Ma,; F. X. Qiu,; L. Mei,; X. W. Zeng,; G. Q. Pan, Dynamically PEGylated and borate-coordination- polymer-coated polydopamine nanoparticles for synergetic tumor- targeted, chemo-photothermal combination therapy. Small 2018, 14, 1703968.
[32]
W. W. Shen,; R. J. Wang,; Q. Q. Fan,; X. Gao,; H. Wang,; Y. Shen,; Y. W. Li,; Y. Y. Cheng, Natural polyphenol inspired polycatechols for efficient siRNA delivery. CCS Chem. 2020, 2, 146-157.
[33]
Z. J. Zhou,; Y. Yan,; L. Wang,; Q. Zhang,; Y. Y. Cheng, Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy. Biomaterials 2019, 203, 63-72.
[34]
M. Kotzian,; N. Roesch,; H. Schroeder,; M. C. Zerner, Optical spectra of transition-metal carbonyls: Chromium hexacarbonyl, iron pentacarbonyl, and nickel tetracarbonyl. J. Am. Chem. Soc. 1989, 111, 7687-7696.
[35]
R. Barbucci,; M. Casolaro,; M. C. Beni,; P. Ferruti,; M. Pesavento,; T. Soldi,; C. Riolo, Protonation and complex formation with heavy- metal ions of two tetrafunctional amines and of a new structurally related ion-exchange resin. J. Chem. Soc. Dalton Trans. 1981, 2559-2564.
[36]
X. X. Xu,; Z. P. Cui,; X. Gao,; X. X. Liu, Photocatalytic activity of transition-metal-ion-doped coordination polymer (CP): Photoresponse region extension and quantum yields enhancement via doping of transition metal ions into the framework of CPs. Dalton Trans. 2014, 43, 8805-8813.
[37]
D. D. Hao,; Y. D. Yang,; B. Xu,; Z. S. Cai, Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization. Appl. Therm. Eng. 2018, 141, 406-412.
[38]
Q. Zhang,; X. F. Xiao,; G. Wang,; X. Ming,; X. H. Liu,; H. Wang,; H. J. Yang,; W. L. Xu,; X. B. Wang, Silk-based systems for highly efficient photothermal conversion under one sun: Portability, flexibility, and durability. J. Mater. Chem. A 2018, 6, 17212-17219.
[39]
S. Sánchez-Cortés,; O. Francioso,; J. V. García-Ramos,; C. Ciavatta,; C. Gessa, Catechol polymerization in the presence of silver surface. Colloids Surf A 2001, 176, 177-184.
[40]
S. Dubey,; D. Singh,; R. A. Misra, Enzymatic synthesis and various properties of poly(catechol). Enzyme Microb. Technol. 1998, 23, 432-437.
[41]
T. S. Sileika,; D. G. Barrett,; R. Zhang,; K. H. A. Lau,; P. B. Messersmith, Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chem., Int. Ed. 2013, 125, 10966-10970.
[42]
H. Lee,; N. F. Scherer,; P. B. Messersmith, Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 2006, 103, 12999-13003.
[43]
G. M. Qin,; X. K. Li,; T. Qiu,; H. T. Zhao,; H. H. Yu,; R. T. Ma, Application of rare earths in advanced ceramic materials. J. Rare Earths 2007, 25, 281-286.
[44]
D. M. L. Goodgame,; M. A. Hitchman,; B. Lippert, Ligating properties of platinum(II) ions in mixed-metal (Pt2M) trimers (M=copper(II), nickel(II), cobalt(II), iron(II)). Inorg. Chem. 1986, 25, 2191-2194.
[45]
F. C. de Godoi,; E. Rodriguez-Castellon,; E. Guibal,; M. M. Beppu, An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem. Eng. J. 2013, 234, 423-429.
[46]
S. Y. Deng,; G. Y. Zhang,; D. Shan,; Y. H. Liu,; K. Wang,; X. J. Zhang, Pyrocatechol violet-assisted in situ growth of copper nanoparticles on carbon nanotubes: The synergic effect for electrochemical sensing of hydrogen peroxide. Electrochim. Acta 2015, 155, 78-84.
[47]
T. Yamashita,; P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441-2449.
[48]
J. Bai,; X. D. Jia,; Z. F. Ma,; X. E. Jiang,; X. P. Sun, Polycatechol nanosheet: A superior nanocarrier for highly effective chemo- photothermal synergistic therapy in vivo. Nanoscale 2016, 8, 5260-5267.
[49]
C. C. Wagner,; S. Calvo,; M. H. Torre,; E. J. Baran, Vibrational spectra of clioquinol and its Cu(II) complex. J. Raman Spectrosc. 2007, 38, 373-376.
[50]
S. Selvaraj,; P. Rajkumar,; K. Thirunavukkarasu,; S. Gunasekaran,; S. Kumaresan, Vibrational (FT-IR and FT-Raman), electronic (UV-vis) and quantum chemical investigations on pyrogallol: A study on benzenetriol dimers. Vib. Spectrosc. 2018, 95, 16-22.
[51]
Q. F. Shi,; S. L. Mu, Preparation of Pt/poly(pyrogallol)/graphene electrode and its electrocatalytic activity for methanol oxidation. J. Power Sources 2012, 203, 48-56.
[52]
H. M. Wilson,; A. R. Shakeelur Rahman,; A. E. Parab,; N. Jha, Ultra-low cost cotton based solar evaporation device for seawater desalination and waste water purification to produce drinkable water. Desalination 2019, 456, 85-96.
[53]
Z. Z. Guo,; G. Wang,; X. Ming,; T. Mei,; J. Y. Wang,; J. H. Li,; J. W. Qian,; X. B. Wang, PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization. ACS Appl. Mater. Interfaces 2018, 10, 24583-24589.
[54]
Y. M. Liu,; S. T. Yu,; R. Feng,; A. Bernard,; Y. Liu,; Y. Zhang,; H. Z. Duan,; W. Shang,; P. Tao,; C. Y. Song, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768-2774.
[55]
N. Xu,; X. Z. Hu,; W. C. Xu,; X. Q. Li,; L. Zhou,; S. N. Zhu,; J. Zhu, Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.
[56]
X. Q. Wang,; G. Ou,; N. Wang,; H. Wu, Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl. Mater. Interfaces 2016, 8, 9194-9199.
[57]
X. Z. Hu,; W. C. Xu,; L. Zhou,; Y. L. Tan,; Y. Wang,; S. N. Zhu,; J. Zhu, Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.
[58]
V. Kashyap,; A. Al-Bayati,; S. M. Sajadi,; P. Irajizad,; S. H. Wang,; H. Ghasemi, A flexible anti-clogging graphite film for scalable solar desalination by heat localization. J. Mater. Chem. A 2017, 5, 15227-15234.
[59]
Z. Z. Wang,; Q. X. Ye,; X. B. Liang,; J. L. Xu,; C. Chang,; C. Y. Song,; W. Shang,; J. B. Wu,; P. Tao,; T. Deng, Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. J. Mater. Chem. A 2017, 5, 16359-16368.
[60]
Z. P. Liu,; Z. J. Yang,; X. C. Huang,; C. Y. Xuan,; J. H. Xie,; H. D. Fu,; Q. X. Wu,; J. M. Zhang,; X. C. Zhou,; Y. Z. Liu, High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. J. Mater. Chem. A 2017, 5, 20044-20052.
[61]
Q. S. Jiang,; H. Gholami Derami,; D. Ghim,; S. S. Cao,; Y. S. Jun,; S. Singamaneni, Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 2017, 5, 18397-18402.
File
12274_2020_3134_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 August 2020
Revised: 13 September 2020
Accepted: 21 September 2020
Published: 17 October 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21975167 and 21774079), the Program of the Science & Technology Department of Guangzhou, China (No. 201803020039), and the Fundamental Research Funds for Central Universities.

Return