AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity

Yijun YinYan TanQiuyuan WeiShucong ZhangSiqi WuQin HuangFeilong Hu( )Yan Mi( )
Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
Show Author Information

Graphical Abstract

Abstract

Although tremendous efforts have been paid on electrocatalysts toward efficient electrochemical hydrogen generation, breakthrough is still highly needed in the design and synthesis of wonderful non-precious-metal electrocatalyst. Herein, a nanovilli Ni2P electrode, which with superaerophobic and superhydropholic can significantly facilitate the mass and electron transfer was constructed via a facial morphology control strategy. Meanwhile, the substitution of sluggish oxygen evolution with urea oxidation, lowering the two-electrode cell voltage to only 1.48 volts to achieve a current density of 10 mA·cm−2. Thus, the as-constructed electrode achieves the operation of hydrogen generation by an AA battery. This work sheds new light on the exploration of other high-efficient electrocatalysts for hydrogen generation by using intermittent clean energy.

Electronic Supplementary Material

Download File(s)
12274_2020_3133_MOESM1_ESM.pdf (2.4 MB)

References

[1]
B. K. Kang,; S. Y. Im,; J. Lee,; S. H. Kwag,; S. B. Kwon,; S. N. Tiruneh,; M. J. Kim,; J. H. Kim,; W. S. Yang,; B. Lim, et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605-1611.
[2]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[3]
X. B. Li,; J. Xiong,; X. M. Gao,; J. T. Huang,; Z. J. Feng,; Z. Chen,; Y. F. Zhu, Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J. Alloys Compd. 2019, 802, 196-209.
[4]
Y. Mi,; L. Y. Wen,; Z. J. Wang,; D. W. Cao,; H. P. Zhao,; Y. L. Zhou,; F. Grote,; Y. Lei, Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution. Catal. Today 2016, 262, 141-145.
[5]
G. X Qu,; T. L. Wu,; Y. N. Yu,; Z. K. Wang,; Y. Zhou,; Z. D Tang,; Q. Yue, Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 2019, 12, 2960-2965.
[6]
Z. C. Zhuang,; Y. Li,; J. Z. Huang,; Z. L. Li,; K. N. Zhao,; Y. L. Zhao,; L. Xu,; L. Zhou,; L. V. Moskaleva,; L. Q. Mai, Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617-624.
[7]
Z. J. Chen,; X. W. Duan,; W. Wei,; S. B. Wang,; Z. J. Zhang,; B. J. Ni, Boride-based electrocatalysts: Emerging candidates for water splitting. Nano Res. 2020, 13, 293-314.
[8]
W. J. Jiang,; T. Tang,; Y. Zhang,; J. S. Hu, Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 2020, 53, 1111-1123.
[9]
Y. P. Lei,; Y. C. Wang,; Y. Liu,; C. Y. Song,; Q. Li,; D. S. Wang,; Y. D. Li, Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. in press, .
[10]
L. Hao,; L. Kang,; H. W. Huang,; L. Q. Ye,; K. L. Han,; S. Q. Yang,; H. J. Yu,; M. Batmunkh,; Y. H. Zhang,; T. Y. Ma, Surface- halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.
[11]
H. Yoon,; H. J. Song,; B. Ju,; D. W. Kim, Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Res. 2020, 13, 2469-2477.
[12]
J. R. Yang,; W. B. Li,; D. S. Wang,; Y. D. Li, Electronic metal- support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, in press, .
[13]
Z. W. Zhuang,; Y. Wang,; C. Q. Xu,; S. J. Liu,; C. Chen,; Q. Peng,; Z. B. Zhuang,; H. Xiao,; Y. Pan,; S. Q. Lu, et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.
[14]
F. T. Kong,; Y. Qiao,; C. Q. Zhang,; X. H. Fan,; A. G. Kong,; Y. K. Shan, Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401-411.
[15]
P. Wang,; J. Qi,; X. Chen,; C. Li,; W. P. Li,; T. H. Wang,; C. H. Liang, Three-dimensional heterostructured NiCoP@NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 4385-4395.
[16]
M. J. Kenney,; J. E. Huang,; Y. Zhu,; Y. T. Meng,; M. Q. Xu,; G. Z. Zhu,; W. H. Hung,; Y. Kuang,; M. C. Lin,; X. M. Sun, et al. An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes. Nano Res. 2019, 12, 1431-1435.
[17]
P. Hao,; W. Q. Zhu,; L. Y. Li,; J. Tian,; J. F. Xie,; F. C. Lei,; G. W. Cui,; Y. Q. Zhang,; B. Tang, Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis. Electrochim. Acta 2020, 338, 135883.
[18]
T. I. Singh,; G. Rajeshkhanna,; S. B. Singh,; T. Kshetri,; N. H. Kim,; J. H. Lee, Metal-organic framework-derived Fe/Co-based bifunctional electrode for H2 production through water and urea electrolysis. ChemSusChem 2019, 12, 4810-4823.
[19]
J. F. Xie,; W. W. Liu,; F. C. Lei,; X. D. Zhang,; H. C. Qu,; L. Gao,; P. Hao,; B. Tang,; Y. Xie, Iron-incorporated α-Ni(OH)2 hierarchical nanosheet arrays for electrocatalytic urea oxidation. Chem. Eur. J. 2018, 24, 18408-18412.
[20]
H. Z. Xu,; K. Ye,; K. Zhu,; J. L. Yin,; J. Yan,; G. L. Wang,; D. X. Cao, Template-directed assembly of urchin-like CoSx/Co-MOF as an efficient bifunctional electrocatalyst for overall water and urea electrolysis. Inorg. Chem. Front. 2020, 7, 2602-2610.
[21]
Y. N. Men,; P. Li,; F. L. Yang,; G. Z. Cheng,; S. L. Chen,; W. Luo, Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 253, 21-27.
[22]
T. Xiong,; G. F. Li,; D. J. Young,; Z. Y. Tan,; X. H. Yin,; Y. Mi,; F. L. Hu, In-situ surface-derivation of Ni-Mo bimetal sulfides nanosheets on Co3O4 nanoarrays as an advanced overall water splitting electrocatalyst in alkaline solution. J. Alloys Compd. 2019, 791, 328-335.
[23]
Y. Y. Zhang,; X. Zhang,; Z. Y. Wu,; B. B. Zhang,; Y. Zhang,; W. J. Jiang,; Y. G. Yang,; Q. H. Kong,; J. S. Hu, Fe/P dual doping boosts the activity and durability of CoS2 polycrystalline nanowires for hydrogen evolution. J. Mater. Chem. A 2019, 7, 5195-5200.
[24]
M. S. Faber,; R. Dziedzic,; M. A. Lukowski,; N. S. Kaiser,; Q. Ding,; S. Jin, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.
[25]
N. N. Han,; K. R. Yang,; Z. Y. Lu,; Y. J. Li,; W. W. Xu,; T. F. Gao,; Z. Cai,; Y. Zhang,; V. S. Batista,; W. Liu, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.
[26]
S. C. Zhang,; W. B. Wang,; F. L. Hu,; Y. Mi,; S. Z. Wang,; Y. W. Liu,; X. M. Ai,; J. K. Fang,; H. Q. Li,; T. Y. Zhai, 2D CoOOH sheet- encapsulated Ni2P into tubular arrays realizing 1,000 mA·cm−2- level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 2020, 12, 140.
[27]
E. L. Hu,; J. Q. Ning,; D. Zhao,; C. Y Xu,; Y. Y. Lin,; Y. J. Zhong,; Z. Y. Zhang,; Y. J. Wang,; Y. Hu, A room-temperature postsynthetic ligand exchange strategy to construct mesoporous Fe-doped CoP hollow triangle plate arrays for efficient electrocatalytic water splitting. Small 2018, 14, 1704233.
[28]
Y. T. Yan,; J. H. Lin,; J. Cao,; S. Guo,; X. H. Zheng,; J. C. Feng,; J. L. Qi, Activating and optimizing the activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through the V doping effect enhanced by P vacancies. J. Mater. Chem. A 2019, 7, 24486-24492.
[29]
Y. Q. Ji,; J. Q. Xie,; Y. Yang,; X. Z. Fu,; R. Sun,; C. P. Wong, NiCoP 1D nanothorns grown on 3D hierarchically porous Ni films for high performance hydrogen evolution reaction. Chin. Chem. Lett. 2020, 31, 855-858.
[30]
Y. Pei,; Y. Cheng,; J. Y. Chen,; W. Smith,; P. Dong,; P. M. Ajayan,; M. X. Ye,; J. F. Shen, Recent developments of transition metal phosphides as catalysts in the energy conversion field. J. Mater. Chem. A 2018, 6, 23220-23243.
[31]
Y. Wang,; B. Kong,; D. Y. Zhao,; H. T. Wang,; C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26-55.
[32]
M. X. Chen,; J. Qi,; W. Zhang,; R. Cao, Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution. Chem. Commun. 2017, 53, 5507-5510.
[33]
H. M. Sun,; X. B. Xu,; Z. H. Yan,; X. Chen,; F. Y. Cheng,; P. S. Weiss,; J. Chen, Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 2017, 29, 8539-8547.
[34]
Y. Tan,; Q. Li,; Q. J. Che,; X. H. Chen,; X. Xu,; Y. S. Chen, Improving activity of Ni3P/Mn hybrid film via electrochemical tuning for water splitting under simulated industrial environment. Electrochim. Acta 2019, 324, 134897.
[35]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[36]
P. Jiang,; Q. Liu,; X. P. Sun, NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014, 6, 13440-13445.
[37]
J. J. Duan,; S. Chen,; C. Zhao, Strained nickel phosphide nanosheet array. ACS Appl. Mater. Interfaces 2018, 10, 30029-30034.
[38]
Y. C. Chu,; C. J. Chang,; Y. P. Zhu,; S. C. Lin,; C. W. Tung,; T. L. Chen,; H. M. Chen, Anionic effects on metal pair of Se-doped nickel diphosphide for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 14247-14255.
[39]
C. Tang,; R. Zhang,; W. B. Lu,; Z. Wang,; D. N. Liu,; S. Hao,; G. Du,; A. M. Asiri,; X. P. Sun, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842-846.
[40]
P. Y. Wang,; Z. H. Pu,; W. Q. Li,; J. W. Zhu,; C. T. Zhang,; Y. F. Zhao,; S. C. Mu, Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting. J. Catal. 2019, 377, 600-608.
[41]
M. Q. Huang,; W. W. Liu,; L. Wang,; J. W. Liu,; G. Y. Chen,; W. B. You,; J. Zhang,; L. J. Yuan,; X. F. Zhang,; R. C. Che, Self- transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 810-817.
[42]
D. N. Liu,; T. T. Liu,; L. X. Zhang,; F. L. Qu,; G. Du,; A. M. Asiri,; X. P. Sun, High-performance urea electrolysis towards less energy- intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A 2017, 5, 3208-3213.
[43]
Z. Y. Yu,; C. C. Lang,; M. R. Gao,; Y. Chen,; Q. Q. Fu,; Y. Duan,; S. H. Yu, Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890-1897.
[44]
Y. F. Feng,; C. Y. Xu,; E. L. Hu,; B. B. Xia,; J. Q. Ning,; C. C. Zheng,; Y. J. Zhong,; Z. Y. Zhang,; Y. Hu, Construction of hierarchical FeP/Ni2P hollow nanospindles for efficient oxygen evolution. J. Mater. Chem. A 2018, 6, 14103-14111.
[45]
T. T. Sun,; S. L. Zhang,; L. B. Xu,; D. S. Wang,; Y. D. Li, An efficient multifunctional hybrid electrocatalyst: Ni2P nanoparticles on MOF-derived Co,N-doped porous carbon polyhedrons for oxygen reduction and water splitting. Chem. Commun. 2018, 54, 12101-12104.
[46]
Q. Wang,; H. Y. Zhao,; F. M. Li,; W. Y. She,; X. M. Wang,; L. Xu,; H. Jiao, Mo-doped Ni2P hollow nanostructures: Highly efficient and durable bifunctional electrocatalysts for alkaline water splitting. J. Mater. Chem. A 2019, 7, 7636-7643.
[47]
W. K. Tang,; X. F. Liu,; Y. Li,; Y. H. Pu,; Y. Lu,; Z. M. Song,; Q. Wang,; R. H. Yu,; J. L. Shui, Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447-454.
[48]
B. Ma,; Z. C. Yang,; Y. T. Chen,; Z. H. Yuan, Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375-380.
[49]
S. C. Zhang,; T. Xiong,; X. F. Tang,; Q. Y. Ma,; F. L. Hu,; Y. Mi, Engineering inner-porous cobalt phosphide nanowire based on controllable phosphating for efficient hydrogen evolution in both acidic and alkaline conditions. Appl. Surf. Sci. 2019, 481, 1524-1531.
[50]
H. J. Yu,; J. Y. Li,; Y. H. Zhang,; S. Q. Yang,; K. L. Han,; F. Dong,; T. Y. Ma,; H. W. Huang, Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880-3884.
[51]
L. N. Sha,; J. L. Yin,; K. Ye,; G. Wang,; K. Zhu,; K. Cheng,; J. Yan,; G. L. Wang,; D. X. Cao, The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. J. Mater. Chem. A 2019, 7, 9078-9085.
[52]
H. Zhang,; H. Y. Li,; B. Akram,; X. Wang, Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327-1331.
[53]
X. B. Li,; J. Xiong,; Y. Xu,; Z. J. Feng,; J. T. Huang, Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions. Chin. J. Catal. 2019, 40, 424-433.
[54]
Y. Chen,; Y. Rao,; R. Z. Wang,; Y. N. Yu,; Q. L. Li,; S. J. Bao,; M. W. Xu,; Q. Yue,; Y. N. Zhang,; Y. J. Kang, Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Res. 2020, 13, 2407-2412.
[55]
J. Xiong,; X. B. Li,; J. T. Huang,; X. M. Gao,; Z. Chen,; J. Y. Liu,; H. Li,; B. B Kang,; W. Q Yao,; Y. F. Zhu, CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl. Catal. B: Environ. 2020, 266, 118602.
Nano Research
Pages 961-968
Cite this article:
Yin Y, Tan Y, Wei Q, et al. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Research, 2021, 14(4): 961-968. https://doi.org/10.1007/s12274-020-3133-x
Topics:

829

Views

25

Crossref

N/A

Web of Science

26

Scopus

3

CSCD

Altmetrics

Received: 18 August 2020
Revised: 13 September 2020
Accepted: 21 September 2020
Published: 23 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return