[1]
B. K. Kang,; S. Y. Im,; J. Lee,; S. H. Kwag,; S. B. Kwon,; S. N. Tiruneh,; M. J. Kim,; J. H. Kim,; W. S. Yang,; B. Lim, et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605-1611.
[2]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[3]
X. B. Li,; J. Xiong,; X. M. Gao,; J. T. Huang,; Z. J. Feng,; Z. Chen,; Y. F. Zhu, Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J. Alloys Compd. 2019, 802, 196-209.
[4]
Y. Mi,; L. Y. Wen,; Z. J. Wang,; D. W. Cao,; H. P. Zhao,; Y. L. Zhou,; F. Grote,; Y. Lei, Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution. Catal. Today 2016, 262, 141-145.
[5]
G. X Qu,; T. L. Wu,; Y. N. Yu,; Z. K. Wang,; Y. Zhou,; Z. D Tang,; Q. Yue, Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 2019, 12, 2960-2965.
[6]
Z. C. Zhuang,; Y. Li,; J. Z. Huang,; Z. L. Li,; K. N. Zhao,; Y. L. Zhao,; L. Xu,; L. Zhou,; L. V. Moskaleva,; L. Q. Mai, Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617-624.
[7]
Z. J. Chen,; X. W. Duan,; W. Wei,; S. B. Wang,; Z. J. Zhang,; B. J. Ni, Boride-based electrocatalysts: Emerging candidates for water splitting. Nano Res. 2020, 13, 293-314.
[8]
W. J. Jiang,; T. Tang,; Y. Zhang,; J. S. Hu, Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 2020, 53, 1111-1123.
[9]
Y. P. Lei,; Y. C. Wang,; Y. Liu,; C. Y. Song,; Q. Li,; D. S. Wang,; Y. D. Li, Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. in press, .
[10]
L. Hao,; L. Kang,; H. W. Huang,; L. Q. Ye,; K. L. Han,; S. Q. Yang,; H. J. Yu,; M. Batmunkh,; Y. H. Zhang,; T. Y. Ma, Surface- halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.
[11]
H. Yoon,; H. J. Song,; B. Ju,; D. W. Kim, Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Res. 2020, 13, 2469-2477.
[12]
J. R. Yang,; W. B. Li,; D. S. Wang,; Y. D. Li, Electronic metal- support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, in press, .
[13]
Z. W. Zhuang,; Y. Wang,; C. Q. Xu,; S. J. Liu,; C. Chen,; Q. Peng,; Z. B. Zhuang,; H. Xiao,; Y. Pan,; S. Q. Lu, et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.
[14]
F. T. Kong,; Y. Qiao,; C. Q. Zhang,; X. H. Fan,; A. G. Kong,; Y. K. Shan, Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401-411.
[15]
P. Wang,; J. Qi,; X. Chen,; C. Li,; W. P. Li,; T. H. Wang,; C. H. Liang, Three-dimensional heterostructured NiCoP@NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 4385-4395.
[16]
M. J. Kenney,; J. E. Huang,; Y. Zhu,; Y. T. Meng,; M. Q. Xu,; G. Z. Zhu,; W. H. Hung,; Y. Kuang,; M. C. Lin,; X. M. Sun, et al. An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes. Nano Res. 2019, 12, 1431-1435.
[17]
P. Hao,; W. Q. Zhu,; L. Y. Li,; J. Tian,; J. F. Xie,; F. C. Lei,; G. W. Cui,; Y. Q. Zhang,; B. Tang, Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis. Electrochim. Acta 2020, 338, 135883.
[18]
T. I. Singh,; G. Rajeshkhanna,; S. B. Singh,; T. Kshetri,; N. H. Kim,; J. H. Lee, Metal-organic framework-derived Fe/Co-based bifunctional electrode for H2 production through water and urea electrolysis. ChemSusChem 2019, 12, 4810-4823.
[19]
J. F. Xie,; W. W. Liu,; F. C. Lei,; X. D. Zhang,; H. C. Qu,; L. Gao,; P. Hao,; B. Tang,; Y. Xie, Iron-incorporated α-Ni(OH)2 hierarchical nanosheet arrays for electrocatalytic urea oxidation. Chem. Eur. J. 2018, 24, 18408-18412.
[20]
H. Z. Xu,; K. Ye,; K. Zhu,; J. L. Yin,; J. Yan,; G. L. Wang,; D. X. Cao, Template-directed assembly of urchin-like CoSx/Co-MOF as an efficient bifunctional electrocatalyst for overall water and urea electrolysis. Inorg. Chem. Front. 2020, 7, 2602-2610.
[21]
Y. N. Men,; P. Li,; F. L. Yang,; G. Z. Cheng,; S. L. Chen,; W. Luo, Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 253, 21-27.
[22]
T. Xiong,; G. F. Li,; D. J. Young,; Z. Y. Tan,; X. H. Yin,; Y. Mi,; F. L. Hu, In-situ surface-derivation of Ni-Mo bimetal sulfides nanosheets on Co3O4 nanoarrays as an advanced overall water splitting electrocatalyst in alkaline solution. J. Alloys Compd. 2019, 791, 328-335.
[23]
Y. Y. Zhang,; X. Zhang,; Z. Y. Wu,; B. B. Zhang,; Y. Zhang,; W. J. Jiang,; Y. G. Yang,; Q. H. Kong,; J. S. Hu, Fe/P dual doping boosts the activity and durability of CoS2 polycrystalline nanowires for hydrogen evolution. J. Mater. Chem. A 2019, 7, 5195-5200.
[24]
M. S. Faber,; R. Dziedzic,; M. A. Lukowski,; N. S. Kaiser,; Q. Ding,; S. Jin, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.
[25]
N. N. Han,; K. R. Yang,; Z. Y. Lu,; Y. J. Li,; W. W. Xu,; T. F. Gao,; Z. Cai,; Y. Zhang,; V. S. Batista,; W. Liu, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.
[26]
S. C. Zhang,; W. B. Wang,; F. L. Hu,; Y. Mi,; S. Z. Wang,; Y. W. Liu,; X. M. Ai,; J. K. Fang,; H. Q. Li,; T. Y. Zhai, 2D CoOOH sheet- encapsulated Ni2P into tubular arrays realizing 1,000 mA·cm−2- level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 2020, 12, 140.
[27]
E. L. Hu,; J. Q. Ning,; D. Zhao,; C. Y Xu,; Y. Y. Lin,; Y. J. Zhong,; Z. Y. Zhang,; Y. J. Wang,; Y. Hu, A room-temperature postsynthetic ligand exchange strategy to construct mesoporous Fe-doped CoP hollow triangle plate arrays for efficient electrocatalytic water splitting. Small 2018, 14, 1704233.
[28]
Y. T. Yan,; J. H. Lin,; J. Cao,; S. Guo,; X. H. Zheng,; J. C. Feng,; J. L. Qi, Activating and optimizing the activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through the V doping effect enhanced by P vacancies. J. Mater. Chem. A 2019, 7, 24486-24492.
[29]
Y. Q. Ji,; J. Q. Xie,; Y. Yang,; X. Z. Fu,; R. Sun,; C. P. Wong, NiCoP 1D nanothorns grown on 3D hierarchically porous Ni films for high performance hydrogen evolution reaction. Chin. Chem. Lett. 2020, 31, 855-858.
[30]
Y. Pei,; Y. Cheng,; J. Y. Chen,; W. Smith,; P. Dong,; P. M. Ajayan,; M. X. Ye,; J. F. Shen, Recent developments of transition metal phosphides as catalysts in the energy conversion field. J. Mater. Chem. A 2018, 6, 23220-23243.
[31]
Y. Wang,; B. Kong,; D. Y. Zhao,; H. T. Wang,; C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26-55.
[32]
M. X. Chen,; J. Qi,; W. Zhang,; R. Cao, Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution. Chem. Commun. 2017, 53, 5507-5510.
[33]
H. M. Sun,; X. B. Xu,; Z. H. Yan,; X. Chen,; F. Y. Cheng,; P. S. Weiss,; J. Chen, Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem. Mater. 2017, 29, 8539-8547.
[34]
Y. Tan,; Q. Li,; Q. J. Che,; X. H. Chen,; X. Xu,; Y. S. Chen, Improving activity of Ni3P/Mn hybrid film via electrochemical tuning for water splitting under simulated industrial environment. Electrochim. Acta 2019, 324, 134897.
[35]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[36]
P. Jiang,; Q. Liu,; X. P. Sun, NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014, 6, 13440-13445.
[37]
J. J. Duan,; S. Chen,; C. Zhao, Strained nickel phosphide nanosheet array. ACS Appl. Mater. Interfaces 2018, 10, 30029-30034.
[38]
Y. C. Chu,; C. J. Chang,; Y. P. Zhu,; S. C. Lin,; C. W. Tung,; T. L. Chen,; H. M. Chen, Anionic effects on metal pair of Se-doped nickel diphosphide for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 14247-14255.
[39]
C. Tang,; R. Zhang,; W. B. Lu,; Z. Wang,; D. N. Liu,; S. Hao,; G. Du,; A. M. Asiri,; X. P. Sun, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842-846.
[40]
P. Y. Wang,; Z. H. Pu,; W. Q. Li,; J. W. Zhu,; C. T. Zhang,; Y. F. Zhao,; S. C. Mu, Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting. J. Catal. 2019, 377, 600-608.
[41]
M. Q. Huang,; W. W. Liu,; L. Wang,; J. W. Liu,; G. Y. Chen,; W. B. You,; J. Zhang,; L. J. Yuan,; X. F. Zhang,; R. C. Che, Self- transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 810-817.
[42]
D. N. Liu,; T. T. Liu,; L. X. Zhang,; F. L. Qu,; G. Du,; A. M. Asiri,; X. P. Sun, High-performance urea electrolysis towards less energy- intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A 2017, 5, 3208-3213.
[43]
Z. Y. Yu,; C. C. Lang,; M. R. Gao,; Y. Chen,; Q. Q. Fu,; Y. Duan,; S. H. Yu, Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890-1897.
[44]
Y. F. Feng,; C. Y. Xu,; E. L. Hu,; B. B. Xia,; J. Q. Ning,; C. C. Zheng,; Y. J. Zhong,; Z. Y. Zhang,; Y. Hu, Construction of hierarchical FeP/Ni2P hollow nanospindles for efficient oxygen evolution. J. Mater. Chem. A 2018, 6, 14103-14111.
[45]
T. T. Sun,; S. L. Zhang,; L. B. Xu,; D. S. Wang,; Y. D. Li, An efficient multifunctional hybrid electrocatalyst: Ni2P nanoparticles on MOF-derived Co,N-doped porous carbon polyhedrons for oxygen reduction and water splitting. Chem. Commun. 2018, 54, 12101-12104.
[46]
Q. Wang,; H. Y. Zhao,; F. M. Li,; W. Y. She,; X. M. Wang,; L. Xu,; H. Jiao, Mo-doped Ni2P hollow nanostructures: Highly efficient and durable bifunctional electrocatalysts for alkaline water splitting. J. Mater. Chem. A 2019, 7, 7636-7643.
[47]
W. K. Tang,; X. F. Liu,; Y. Li,; Y. H. Pu,; Y. Lu,; Z. M. Song,; Q. Wang,; R. H. Yu,; J. L. Shui, Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447-454.
[48]
B. Ma,; Z. C. Yang,; Y. T. Chen,; Z. H. Yuan, Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375-380.
[49]
S. C. Zhang,; T. Xiong,; X. F. Tang,; Q. Y. Ma,; F. L. Hu,; Y. Mi, Engineering inner-porous cobalt phosphide nanowire based on controllable phosphating for efficient hydrogen evolution in both acidic and alkaline conditions. Appl. Surf. Sci. 2019, 481, 1524-1531.
[50]
H. J. Yu,; J. Y. Li,; Y. H. Zhang,; S. Q. Yang,; K. L. Han,; F. Dong,; T. Y. Ma,; H. W. Huang, Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880-3884.
[51]
L. N. Sha,; J. L. Yin,; K. Ye,; G. Wang,; K. Zhu,; K. Cheng,; J. Yan,; G. L. Wang,; D. X. Cao, The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. J. Mater. Chem. A 2019, 7, 9078-9085.
[52]
H. Zhang,; H. Y. Li,; B. Akram,; X. Wang, Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327-1331.
[53]
X. B. Li,; J. Xiong,; Y. Xu,; Z. J. Feng,; J. T. Huang, Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions. Chin. J. Catal. 2019, 40, 424-433.
[54]
Y. Chen,; Y. Rao,; R. Z. Wang,; Y. N. Yu,; Q. L. Li,; S. J. Bao,; M. W. Xu,; Q. Yue,; Y. N. Zhang,; Y. J. Kang, Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Res. 2020, 13, 2407-2412.
[55]
J. Xiong,; X. B. Li,; J. T. Huang,; X. M. Gao,; Z. Chen,; J. Y. Liu,; H. Li,; B. B Kang,; W. Q Yao,; Y. F. Zhu, CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl. Catal. B: Environ. 2020, 266, 118602.