Journal Home > Volume 14 , Issue 7

Understanding bubbles evolution kinetics on electrodes with varied geometries is of fundamental importance for advanced electrodes design in gas evolution reaction. In this work, the evolution kinetics of electro-generated hydrogen bubbles are recorded in situ on three (i.e. smooth, nanoporous, and nanoarray) Pt electrodes to identify the geometry dependence. The bubble radius shows a time-dependent growth kinetic, which is tightly-connected to the electrode geometry. Among the three electrodes, the smooth one shows a typical time coefficient of 0.5, in consistence with reported values; the nanoporous one shows a time coefficient of 0.47, less than the classic one (0.5); while the nanoarray one exhibits fastest bubble growth kinetics with a time coefficient higher than 0.5 (0.54). Moreover, the nanoarray electrode has the smallest bubble detachment size and the largest growth coefficient (23.3) of all three electrodes. Based on the experimental results, a growth model combined direct bottom- injection with micro-convection is proposed to illustrate the surface geometry dependent coefficients, i.e., the relationship between geometry and bubble evolution kinetics. The direct injection of generated gas molecules from the bottom of bubbles at the three phase boundaries are believed the key to tailor the bubble wetting states and thus determine the bubble evolution kinetics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries

Show Author's information Jingshan Qin1,§Tianhui Xie1Daojin Zhou1,§Liang Luo1( )Zhengyi Zhang1Zhicheng Shang1Jiawei Li1,2Lagnamayee Mohapatra1Jinwen Yu1Haijun Xu1( )Xiaoming Sun1( )
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Qingdao Institute of Nuokang-Xinqingyuan, Qingdao, Shandong 266700, China

§ Jingshan Qin and Daojin Zhou contributed equally to this work.

Abstract

Understanding bubbles evolution kinetics on electrodes with varied geometries is of fundamental importance for advanced electrodes design in gas evolution reaction. In this work, the evolution kinetics of electro-generated hydrogen bubbles are recorded in situ on three (i.e. smooth, nanoporous, and nanoarray) Pt electrodes to identify the geometry dependence. The bubble radius shows a time-dependent growth kinetic, which is tightly-connected to the electrode geometry. Among the three electrodes, the smooth one shows a typical time coefficient of 0.5, in consistence with reported values; the nanoporous one shows a time coefficient of 0.47, less than the classic one (0.5); while the nanoarray one exhibits fastest bubble growth kinetics with a time coefficient higher than 0.5 (0.54). Moreover, the nanoarray electrode has the smallest bubble detachment size and the largest growth coefficient (23.3) of all three electrodes. Based on the experimental results, a growth model combined direct bottom- injection with micro-convection is proposed to illustrate the surface geometry dependent coefficients, i.e., the relationship between geometry and bubble evolution kinetics. The direct injection of generated gas molecules from the bottom of bubbles at the three phase boundaries are believed the key to tailor the bubble wetting states and thus determine the bubble evolution kinetics.

Keywords: growth kinetics, hydrogen bubble evolution, surface geometry, solid surface, diffusion controlled

References(40)

[1]
Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.
[2]
Li, L. J.; Liu, S. Y.; Manthiram, A. Co3O4 nanocrystals coupled with O- and N-doped carbon nanoweb as a synergistic catalyst for hybrid Li-air batteries. Nano Energy 2015, 12, 852-860.
[3]
Cheng, Y.; Xu, C. W.; Jia, L. C.; Gale, J. D.; Zhang, L. L.; Liu, C.; Shen, P. K.; Jiang, S. P. Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Appl. Catal. B-Environ. 2015, 163, 96-104.
[4]
Rees, N. V.; Compton, R. G. Carbon-free energy: A review of ammonia- and hydrazine-based electrochemical fuelcells. Energy Environ. Sci. 2011, 4, 1255-1260.
[5]
Meng, Y. Y.; Zou, X. X.; Huang, X. X.; Goswami, A.; Liu, Z. W.; Asefa, T. Polypyrrole-derived nitrogen and oxygen Co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation. Adv. Mater. 2014, 26, 6510-6516.
[6]
Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281-2287.
[7]
Hernández, S.; Barbero, G.; Saracco, G.; Alexe-Ionescu, A. L. Considerations on oxygen bubble formation and evolution on BiVO4 porous anodes used in water splitting photoelectrochemical cells. J. Phys. Chem. C 2015, 119, 9916-9925.
[8]
Hetsroni, G.; Zakin, J. L.; Lin, Z.; Mosyak, A.; Pancallo, E. A.; Rozenblit, R. The effect of surfactants on bubble growth, wall thermal patterns and heat transfer in pool boiling. Int. J. Heat Mass Transf. 2001, 44, 485-497.
[9]
Ahn, S. H.; Choi, I.; Park, H. Y.; Hwang, S. J.; Yoo, S. J.; Cho, E. A.; Kim, H. J.; Henkensmeier, D.; Nam, S. W.; Kim, S. K.; et al. Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chem. Commun. 2013, 49, 9323-9325.
[10]
Scriven, L. E. On the dynamics of phase growth. Chem. Eng. Sci. 1959, 10, 1-13.
[11]
Kiuchi, D.; Matsushima, H.; Fukunaka, Y.; Kuribayashi, K. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J. Electrochem. Soc. 2006, 153, E138-E143.
[12]
Hanwright, J.; Zhou, J.; Evans, G. M.; Galvin, K. P. Influence of surfactant on gas bubble stability. Langmuir 2005, 21, 4912-4920.
[13]
Jones, S. F.; Evans, G. M.; Galvin, K. P. Bubble nucleation from gas cavities -a review. Adv. Colloid Interface Sci. 1999, 80, 27-50.
[14]
Huang, C.; Guo, Z. G. The wettability of gas bubbles: From macro behavior to nano structures to applications. Nanoscale 2018, 10, 19659-19672.
[15]
Brandon N. P.; Kelsall, G. H. Growth kinetics of bubbles electrogenerated at microelectrodes. J. Appl. Electrochem. 1985, 15, 475-484.
[16]
Burman, J. E. Bubble growth in supersaturated solution. Ph.D. Dissertation, University of London, London, 1974.
[17]
Strenge, P. H.; Orell, A.; Westwater, J. W. Microscopic study of bubble growth during nucleate boiling. AIChE J. 1961, 7, 578-583.
[18]
Yang, F. C.; Manjare, M.; Zhao, Y. P.; Qiao, R. On the peculiar bubble formation, growth, and collapse behaviors in catalytic micro-motor systems. Microfluid. Nanofluid. 2017, 21, 6.
[19]
Yang, X. G.; Karnbach, F.; Uhlemann, M.; Odenbach, S.; Eckert, K. Dynamics of single hydrogen bubbles at a platinum microelectrode. Langmuir 2015, 31, 8184-8193.
[20]
Donose, B. C.; Harnisch, F.; Taran, E. Electrochemically produced hydrogen bubble probes for gas evolution kinetics and force spectroscopy. Electrochem. Commun. 2012, 24, 21-24.
[21]
Wang, M. Y.; Wang, Z.; Guo, Z. C. Water electrolysis enhanced by super gravity field for hydrogen production. Int. J. Hydrog. Energy 2010, 35, 3198-3205.
[22]
Koza, J. A.; Mühlenhoff, S.; Żabiński, P.; Nikrityuk, P. A.; Eckert, K.; Uhlemann, M.; Gebert, A.; Weier, T.; Schultz, L.; Odenbach, S. Hydrogen evolution under the influence of a magnetic field. Electrochim. Acta 2011, 56, 2665-2675.
[23]
Rivas, D. F.; Prosperetti, A.; Zijlstra, A. G.; Lohse, D.; Gardeniers, H. J. G. E. Efficient sonochemistry through microbubbles generated with micromachined surfaces. Angew. Chem., Int. Ed. 2010, 49, 9699-9701.
[24]
Xu, W. W.; Lu, Z. Y.; Wan, P. B.; Kuang, Y.; Sun, X. M. High-performance water electrolysis system with double nanostructured superaerophobic electrodes. Small 2016, 12, 2492-2498.
[25]
Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361-2366.
[26]
Zhang, J.; Sheng, X.; Jin, J.; Feng, X. J.; Jiang, L. High performance metal oxide based sensing device using an electrode with a solid/ liquid/air triphase interface. Nano Res. 2017, 10, 2998-3004.
[27]
Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Accounts Chem. Res. 2018, 51, 1590-1598.
[28]
Li, Y. J.; Zhang, H. C.; Xu, T. H.; Lu, Z. Y.; Wu, X. C.; Wan, P. B.; Sun, X. M.; Jiang, L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1737-1744.
[29]
Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Zheng, Y. R.; Duan, Y.; Gao, Q.; Wu, R.; Sun, B.; Gao, M. R.; Wang, G. X. et al. “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 2019, 141, 7537-7543.
[30]
Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.
[31]
Yan, Y. Y.; Gao, N.; Barthlott, W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 2011, 169, 80-105.
[32]
Chandra Sekhar, S.; Nagaraju, G.; Ramulu, B.; Hussain, S. K.; Narsimulu, D.; Yu, J. S. Multifunctional core-shell-like nanoarchitectures for hybrid supercapacitors with high capacity and long-term cycling durability. Nano Res. 2019, 12, 2597-2608.
[33]
Wang, Y. C.; Hu, X. W.; Cao, Z. S.; Guo, L. J. Investigations on bubble growth mechanism during photoelectrochemical and electrochemical conversions. Colloid Surf. A:Physicochem. Eng. Asp. 2016, 505, 86-92.
[34]
Sakuma, G.; Fukunaka, Y.; Matsushima, H. Nucleation and growth of electrolytic gas bubbles under microgravity. Int. J. Hydrog. Energy 2014, 39, 7638-7645.
[35]
Li, Z. G.; Kong, Q.; Ma, X. Y.; Zang, D. Y.; Guan, X. H.; Ren, X. H. Dynamic effects and adhesion of water droplet impact on hydrophobic surfaces: Bouncing or sticking. Nanoscale 2017, 9, 8249-8255.
[36]
Zhang, X. J.; Liu, Y.; Liu, Y. H.; Ahmed, S. I. U. Controllable and switchable capillary adhesion mechanism for bio-adhesive pads: Effect of micro patterns. Chin. Sci. Bull. 2009, 54, 1648-1654.
[37]
Brussieux, C.; Viers, P.; Roustan, H.; Rakib, M. Controlled electrochemical gas bubble release from electrodes entirely and partially covered with hydrophobic materials. Electrochim. Acta 2011, 56, 7194-7201.
[38]
Hu, X. W.; Cao, Z. S.; Wang, Y. H.; Shen, S. H.; Guo, L. J.; Chen, J. W. Single photogenerated bubble at gas-evolving TiO2 nanorod- array electrode. Electrochim. Acta. 2016, 202, 175-185.
[39]
Haider, S. I.; Webb, R. L. A transient micro-convection model of nucleate pool boiling. Int. J. Heat Mass Transf. 1997, 40, 3675-3688.
[40]
Lee, R. C.; Nydahl, J. E. Numerical calculation of bubble growth in nucleate boiling from inception through departure. J. Heat Transf. 1989, 111, 474-479.
File
12274_2020_3132_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 July 2020
Revised: 19 September 2020
Accepted: 20 September 2020
Published: 05 July 2021
Issue date: July 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We thank Prof. Weng-Feng Lin from Loughborough University and Hongjie Dai from Stanford University for the valuable discussion. This work was supported by the National Natural Science Foundation of China (NSFC), the National Key Research and Development Project (Nos. 2018YFB1502401 and 2018YFA0702002), the Royal Society and the Newton Fund through the Newton Advanced Fellowship award (NAF\ R1\191294), the Program for Changjiang Scholars and Innovation Research Team in the University (No. IRT1205), the Fundamental Research Funds for the Central Universities, and the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of China.

Return