Journal Home > Volume 14 , Issue 6

The two-dimensional (2D) materials have been widely developed recently in material characteristics with advanced optical and electrical properties, and they have been extensively studied as candidates for the next generation of optoelectronic devices. This review will mainly focus on the preparation methods and the light emitting applications of 2D transition metal dichalcogenides (TMDs), 2D black phosphorene (BP) and 2D perovskites. The review will first introduce the preparation methods for TMDs and BP. Due to the variations of band structure, exciton binding energies and light-matter interaction in TMDs and BP, the different light emitting devices (LEDs) designs based on TMDs and BP will be discussed and summarized. Then the review will turn the focus to 2D perovskites, starting with a description of the preparation methods for the different structural perovskites. In order to review and summarize the achievements of 2D perovskites-based LEDs, the high efficiency perovskites LEDs are discussed. Finally, the review will present challenges, opportunities, and outlook for the future development of 2D materials-based light emitting applications.


menu
Abstract
Full text
Outline
About this article

Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives

Show Author's information Yi Zhu1,2,§Xueqian Sun1,§Yilin Tang1Lan Fu2Yuerui Lu1( )
Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, ACT 2601, Australia
Department of Electronic Materials Engineering, Research School of Physics and Engineering, the Australian National University, Canberra, ACT 2601, Australia

§ Yi Zhu and Xueqian Sun contributed equally to this work.

Abstract

The two-dimensional (2D) materials have been widely developed recently in material characteristics with advanced optical and electrical properties, and they have been extensively studied as candidates for the next generation of optoelectronic devices. This review will mainly focus on the preparation methods and the light emitting applications of 2D transition metal dichalcogenides (TMDs), 2D black phosphorene (BP) and 2D perovskites. The review will first introduce the preparation methods for TMDs and BP. Due to the variations of band structure, exciton binding energies and light-matter interaction in TMDs and BP, the different light emitting devices (LEDs) designs based on TMDs and BP will be discussed and summarized. Then the review will turn the focus to 2D perovskites, starting with a description of the preparation methods for the different structural perovskites. In order to review and summarize the achievements of 2D perovskites-based LEDs, the high efficiency perovskites LEDs are discussed. Finally, the review will present challenges, opportunities, and outlook for the future development of 2D materials-based light emitting applications.

Keywords: perovskite, two-dimensional materials, optoelectronic devices, light emitting devices, transition metal dichalcogenides (TMDs), perovskite light emitting device (LED)

References(203)

[1]
K. S. Novoselov,; D. Jiang,; F. Schedin,; T. J. Booth,; V. V. Khotkevich,; S. V. Morozov,; A. K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[2]
M. S. Xu,; T. Liang,; M. M. Shi,; H. Z. Chen, Graphene-like two- dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
[3]
V. Nicolosi,; M. Chhowalla,; M. G. Kanatzidis,; M. S. Strano,; J. N. Coleman, Liquid exfoliation of layered materials. Science 2013, 340, 1226419.
[4]
B. Radisavljevic,; A. Radenovic,; J. Brivio,; V. Giacometti,; A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[5]
A. Splendiani,; L. Sun,; Y. B. Zhang,; T. S. Li,; J. Kim,; C. Y. Chim,; G. Galli,; F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[6]
A. Castellanos-Gomez,; R. van Leeuwen,; M. Buscema,; H. S. J. van der Zant,; G. A. Steele,; W. J. Venstra, Single-layer MoS2 mechanical resonators. Adv. Mater. 2013, 25, 6719-6723.
[7]
D. Lloyd,; X. H. Liu,; N. Boddeti,; L. Cantley,; R. Long,; M. L. Dunn,; J. S. Bunch, Adhesion, stiffness, and instability in atomically thin MoS2 bubbles. Nano Lett. 2017, 17, 5329-5334.
[8]
H. R. Gutiérrez,; N. Perea-López,; A. L. Elías,; A. Berkdemir,; B. Wang,; R. T. Lv,; F. López-Urías,; V. H. Crespi,; H. Terrones,; M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447-3454.
[9]
W. Z. Wu,; L. Wang,; Y. L. Li,; F. Zhang,; K. Lin,; S. M. Niu,; D. Chenet,; X. Zhang,; Y. F. Hao,; T. F. Heinz, et al. Piezoelectricity of single- atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470-474.
[10]
A. Sharma,; L. L. Zhang,; J. O. Tollerud,; M. H. Dong,; Y. Zhu,; R. Halbich,; T. Vogl,; K. Liang,; H T. Nguyen,; F. Wang, et al. Super- transport of excitons in atomically thin organic semiconductors at the 2D quantum limit. 2020, arXiv:2002.02623, 2020. arXiv.org e-Print archive. https://arxiv.org/abs/2002.02623 (accessed Mar 22, 2020).
DOI
[11]
A. R. Khan,; T. Lu,; W. D. Ma,; Y. R. Lu,; Y. Liu, Tunable optoelectronic properties of WS2 by local strain engineering and folding. Adv. Electron. Mater. 2020, 6, 1901381.
[12]
G. P. Neupane,; W. D. Ma,; T. Yildirim,; Y. L. Tang,; L. L. Zhang,; Y. R. Lu, 2D organic semiconductors, the future of green nanotechnology. Nano Mater. Sci. 2019, 1, 246-259.
[13]
A. Sharma,; A. Khan,; Y. Zhu,; R. Halbich,; W. D. Ma,; Y. L. Tang,; B. W. Wang,; Y. R. Lu, Quasi-line spectral emissions from highly crystalline one-dimensional organic nanowires. Nano Lett. 2019, 19, 7877-7886.
[14]
L. L. Zhang,; A. Sharma,; Y. Zhu,; Y. H. Zhang,; B. W. Wang,; M. H. Dong,; H. T. Nguyen,; Z. Wang,; B. Wen,; Y. J. Cao, et al. Efficient and layer-dependent exciton pumping across atomically thin organic- inorganic type-I heterostructures. Adv. Mater. 2018, 30, 1803986.
[15]
Z. P. Sun,; A. Martinez,; F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227-238.
[16]
J. P. Lu,; J. Yang,; A. Carvalho,; H, W. Liu,; Y. R. Lu,; C. H. Sow, Light-matter interactions in phosphorene. Acc. Chem. Res. 2016, 49, 1806-1815.
[17]
J. Yang,; R. J. Xu,; J. J. Pei,; Y. W. Myint,; F. Wang,; Z. Wang,; S. Zhang,; Z. F. Yu,; Y. R. Lu, Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 2015, 4, e312.
[18]
S. Zhang,; J. Yang,; R. J. Xu,; F. Wang,; W. F. Li,; M. Ghufran,; Y. W. Zhang,; Z. F. Yu,; G. Zhang,; Q. H. Qin, et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590-9596.
[19]
K. F. Mak,; J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.
[20]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[21]
A. Carvalho,; M. Wang,; X. Zhu,; A. S. Rodin,; H. B. Su,; A. H. Castro Neto, Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061.
[22]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[23]
W. J. Zhao,; R. M. Ribeiro,; M. Toh,; A. Carvalho,; C. Kloc,; A. H. Castro Neto,; G. Eda, Origin of indirect optical transitions in few- layer MoS2, WS2, and WSe2. Nano Lett. 2013, 13, 5627-5634.
[24]
A. Steinhoff,; J. H. Kim,; F. Jahnke,; M. Rösner,; D. S. Kim,; C. Lee,; G. H. Han,; M. S. Jeong,; T. O. Wehling,; C. Gies, Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 2015, 15, 6841-6847.
[25]
K. L. He,; N. Kumar,; L. Zhao,; Z. F. Wang,; K. F. Mak,; H. Zhao,; J. Shan, Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.
[26]
K. F. Mak,; K. L, Lee, C. He,; G. H. Lee,; J. Hone,; T. F. Heinz,; J. Shan, Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
[27]
G. Moody,; C. K. Dass,; K. Hao,; C. H. Chen,; L. J. Li,; A. Singh,; K. Tran,; G. Clark,; X. D. Xu,; G. Berghäuser, et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 2015, 6, 8315.
[28]
Z. L. Ye,; T. Cao,; K. O’Brien,; H. Y. Zhu,; X. B. Yin,; Y. Wang,; S. G. Louie,; X. Zhang, Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513, 214-218.
[29]
J. J. Pei,; J. Yang,; Y. R. Lu, Elastic and inelastic light-matter interactions in 2D materials. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000208.
[30]
J. J. Pei,; J. Yang,; T. Yildirim,; H. Zhang,; Y. R. Lu, Many-body complexes in 2D semiconductors. Adv. Mater. 2019, 31, 1706945.
[31]
X. M. Wang,; F. N. Xia, Van der Waals heterostructures: Stacked 2D materials shed light. Nat. Mater. 2015, 14, 264-265.
[32]
A. Sharma,; H, Zhang, L. L. Yan,; X. Q. Sun,; B. Q. Liu,; Y. R. Lu, Highly enhanced many-body interactions in anisotropic 2D semiconductors. Acc. Chem. Res. 2018, 51, 1164-1173.
[33]
H. T. Chen,; V. Corboliou,; A. S. Solntsev,; D. Y. Choi,; M. A. Vincenti,; D. de Ceglia,; C. de Angelis,; Y. R. Lu,; D. N. Neshev, Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci. Appl. 2017, 6, e17060.
[34]
Y. L. Li,; Y. Rao,; K. F. Mak,; Y. M. You,; S. Y. Wang,; C. R. Dean,; T. F. Heinz, Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329-3333.
[35]
X. Cheng, J. X. Zhou,; Y. B. Zhou,; T. Cao,; H. Hong,; Z. M. Liao,; S. W. Wu,; H. L. Peng,; K. H. Liu,; D. P. Yu, Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc. 2015, 137, 7994-7997.
[36]
L. Mennel,; M. Paur,; T. Mueller, Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photonics 2019, 4, 034404.
[37]
M. Chhowalla,; Z. F. Liu,; H. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584-2586.
[38]
J. R. Schaibley,; H. Y. Yu,; G. Clark,; P. Rivera,; J. S. Ross,; K. L. Seyler,; W. Yao,; X. D. Xu, Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.
[39]
D. Y. Qiu,; F. H. da Jornada,; S. G. Louie, Screening and many-body effects in two-dimensional crystals: Monolayer MoS2. Phys. Rev. B 2016, 93, 235435.
[40]
Y. M. You,; X. X. Zhang,; T. C. Berkelbach,; M. S. Hybertsen,; D. R. Reichman,; T. F. Heinz, Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477-481.
[41]
Z. F. Wang,; D. A. Rhodes,, K. Watanabe,; T. Taniguchi,; J. C. Hone,; J. Shan,; K. F. Mak, Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019, 574, 76-80.
[42]
P. Rivera,; H. Y. Yu,; K. L. Seyler,; N. P. Wilson,; W. Yao,; X. D. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004-1015.
[43]
D. Unuchek,; A. Ciarrocchi,; A. Avsar,; K. Watanabe,; T. Taniguchi,; A. Kis, Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 2018, 560, 340-344.
[44]
M. M. Fogler,; L. V. Butov,; K. S. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 2014, 5, 4555.
[45]
M. Barbone,; A. R.P. Montblanch,; D. M. Kara,; C. Palacios-Berraquero,; A. R. Cadore,; D. De Fazio,; B. Pingault,; E. Mostaani,; H. Li,; B. Chen, et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 2018, 9, 3721.
[46]
K. Han,; G. H. Ahn,; J. Cho,; D. H. Lien,; M. Amani,; S. B. Desai,; G. Zhang,; H. Kim,; N. Gupta,; A. Javey, et al. Bright electroluminescence in ambient conditions from WSe2 p-n diodes using pulsed injection. Appl. Phys. Lett. 2019, 115, 011103.
[47]
C. Y. Lan,; Z. Y. Zhou,; R. J. Wei,; J. C. Ho, Two-dimensional perovskite materials: From synthesis to energy-related applications. Mater. Today Energy 2019, 11, 61-82.
[48]
L. T. Dou,; A. B. Wong,; Y. Yu,; M. L. Lai,; N. Kornienko,; S. W. Eaton,; A. Fu,; C. G. Bischak,; J. Ma,; T. N. Ding, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 2015, 349, 1518-1521.
[49]
J. C. Blancon,; H. Tsai,; W. Nie,; C. C. Stoumpos,; L. Pedesseau,; C. Katan,; M. Kepenekian,; C. M. M. Soe,; K. Appavoo,; M. Y. Sfeir, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288-1292.
[50]
C. X. Huo,; B. Cai,; Z. Yuan,; B. W. Ma,; H. B. Zeng, Two- dimensional metal halide perovskites: Theory, synthesis, and optoelectronics. Small Methods 2017, 1, 1600018.
[51]
H. Tsai,; W. Y. Nie,; J. C. Blancon,; C. C. Stoumpos,; R. Asadpour,; B. Harutyunyan,; A. J. Neukirch,; R. Verduzco,; J. J. Crochet,; S. Tretiak, et al. High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 2016, 536, 312-316.
[52]
D. B. Farmer,; R. Golizadeh-Mojarad,; V. Perebeinos,; Y. M. Lin,; G. S. Tulevski,; J. C. Tsang,; P. Avouris, Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 2009, 9, 388-392.
[53]
E. C. Peters,; E. J. H. Lee,; M. Burghard,; K. Kern, Gate dependent photocurrents at a graphene p-n junction. Appl. Phys. Lett. 2010, 97, 193102.
[54]
M. C. Lemme,; F. H. L. Koppens,; A. L. Falk,; M. S. Rudner,; H. Park,; L. S. Levitov,; C. M. Marcus, Gate-activated photoresponse in a graphene p-n junction. Nano Lett. 2011, 11, 4134-4137.
[55]
B. W. H. Baugher,; H. O. H. Churchill,; Y. F. Yang,; P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262-267.
[56]
C. H. Lee,; G. H. Lee,; A. M. van der Zande,; W. C. Chen,; Y. L. Li,; M. Y. Han,; X. Cui,; G. Arefe,; C. Nuckolls,; T. F. Heinz, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
[57]
C. Palacios-Berraquero,; M. Barbone,; D. M. Kara,; X. L. Chen,; I. Goykhman,; D. Yoon,; A. K. Ott,; J. Beitner,; K. Watanabe,; T. Taniguchi, et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 2016, 7, 12978.
[58]
J. Kang,; S. Tongay,; J. Zhou,; J. B. Li,; J. Q. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.
[59]
G. Moody,; J. Schaibley,; X. D. Xu, Exciton dynamics in monolayer transition metal dichalcogenides. J. Opt. Soc. Am. B 2016, 33, C39-C49.
[60]
T. Jakubczyk,; V. Delmonte,; M. Koperski,; K. Nogajewski,; C. Faugeras,; W. Langbein,; M. Potemski,; J. Kasprzak, Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Lett. 2016, 16, 5333-5339.
[61]
S. Mouri,; Y. Miyauchi,; K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[62]
J. S. Ross,; S. F. Wu,; H. Y. Yu,; N. J. Ghimire,; A. M. Jones,; G. Aivazian,; J. Q. Yan,; D. G. Mandrus,; D. Xiao,; W. Yao, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.
[63]
J. Yang,; T. Y. Lü,; Y. W. Myint,; J. J. Pei,; D. Macdonald,; J. C. Zheng,; Y. R. Lu, Robust excitons and trions in monolayer MoTe2. ACS Nano 2015, 9, 6603-6609.
[64]
M. Amani,; D. H. Lien,; D. Kiriya,; J. Xiao,; A. Azcatl,; J. Noh,; S. R. Madhvapathy,; R. Addou,; S. KC,; M. Dubey, et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065-1068.
[65]
D. Voiry,; A. Mohite,; M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702-2712.
[66]
C. L. Tan,; X. H. Cao,; X. J. Wu,; Q. Y. He,; J. Yang,; X. Zhang,; J. Z. Chen,; W. Zhao,; S. K. Han,; G. H. Nam, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[67]
A. Castellanos-Gomez,; M. Buscema,; R. Molenaar,; V. Singh,; L. Janssen,; H. S. J. van der Zant,; G. A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.
[68]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; M. I. Katsnelson,; I. V. Grigorieva,; S. V. Dubonos,; A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
[69]
B. Wen,; Y. Zhu,; D. Yudistira,; A. Boes,; L. L. Zhang,; T. Yidirim,; B. Q. Liu,; H. Yan,; X. Q. Sun,; Y. Zhou, et al. Ferroelectric-driven exciton and trion modulation in monolayer molybdenum and tungsten diselenides. ACS Nano 2019, 13, 5335-5343.
[70]
J. N. Coleman,; M. Lotya,; A. O'Neill,; S. D. Bergin,; P. J. King,; U. Khan,; K. Young,; A. Gaucher,; S. De,; R. J. Smith, et al. Two- dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
[71]
P. Yasaei,; B. Kumar,; T. Foroozan,; C. H. Wang,; M. Asadi,; D. Tuschel,; J. E. Indacochea,; R. F. Klie,; A. Salehi-Khojin, High- quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887-1892.
[72]
Z. Y. Zeng,; Z. Y. Yin,; X. Huang,; H. Li,; Q. Y. He,; G. Lu,; F. Boey,; H. Zhang, Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. 2011, 123, 11289-11293.
[73]
X. B. Fan,; P. T. Xu,; D. K. Zhou,; Y. F. Sun,; Y. G.; C. Li,; M. A. T. Nguyen,; M. Terrones,; T. E. Mallouk, Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 2015, 15, 5956-5960.
[74]
J. J. Pei,; J. Yang,; X. B. Wang,; Z. F. Yu,; D. Y. Choi,; B. Luther-Davies,; Y. R. Lu, Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450.
[75]
T. Vogl,; Y. R. Lu,; P. K. Lam, Room temperature single photon source using fiber-integrated hexagonal boron nitride. J. Phys. D Appl. Phys. 2017, 50, 295101.
[76]
Z. Y. Zeng,; T. Sun,; J. X. Zhu,; Xiao. Huang,; Z. Y. Yin,; G. Lu,; Z. X. Fan,; Q. Y. Yan,; H. H. Hng,; H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem., Int. Ed. 2012, 51, 9052-9056.
[77]
Y. Huang,; Y. H. Pan,; R. Yang,; L. H. Bao,; L. Meng,; H. L. Luo,; Y. Q. Cai,; G. D. Liu,; W. J. Zhao,; Z. Zhou, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.
[78]
K. K. Liu,; W. J. Zhang,; Y. H. Lee,; Y. C. Lin,; M. T. Chang,; C. Y. Su,; C. S. Chang,; H. Li,; Y. M. Shi,; H. Zhang, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.
[79]
Y. Zhu,; J. Yang,; S. Zhang,; S. Mokhtar,; J. J. Pei,; X. H. Wang,; Y. R. Lu, Strongly enhanced photoluminescence in nanostructured monolayer MoS2 by chemical vapor deposition. Nanotechnology 2016, 27, 135706.
[80]
X. L. Wang,; Y. J. Gong,; G. Shi,; W. L. Chow,; K. Keyshar,; G. L. Ye,; R. Vajtai,; J. Lou,; Z. Liu,; E. Ringe, et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125-5131.
[81]
P. Chen,; Z. W. Zhang,; X. D. Duan,; X. F. Duan, Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129-3151.
[82]
K. Kang,; S. E. Xie,; L. J. Huang,; Y. M. Han,; P. Y. Huang,; K. F. Mak,; C. J. Kim,; D. Muller,; J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.
[83]
Y. Tian,; C. K. Zhou,; M. Worku,; X. Wang,; Y. C. Ling,; H. W. Gao,; Y. Zhou,; Y. Miao,; J. J. Guan,; B. W. Ma, Highly efficient spectrally stable red perovskite light-emitting diodes. Adv. Mater. 2018, 30, 1707093.
[84]
R. C. Miller,; D. A. Kleinman,; W. T. Tsang,; A. C. Gossard, Observation of the excited level of excitons in GaAs quantum wells. Phys. Rev. B 1981, 24, 1134-1136.
[85]
R. C. Miller,; D. A. Kleinman, Excitons in GaAs quantum wells. J. Lumin. 1985, 30, 520-540.
[86]
A. Chernikov,; T. C. Berkelbach,; H. M. Hill,; A. Rigosi,; Y. L. Li,; O. B. Aslan,; D. R. Reichman,; M. S. Hybertsen,; T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.
[87]
T. Cheiwchanchamnangij,; W. R. L. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.
[88]
A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.
[89]
S. Park,; N. Mutz,; T. Schultz,; S. Blumstengel,; A. Han,; A. Aljarb,; L. J. Li,; E. J. W. List-Kratochvil,; P. Amsalem,; N. Koch, Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates. 2D Mater. 2018, 5, 025003.
[90]
B. R. Zhu,; X. Chen,; X. D. Cui, Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.
[91]
M. M. Ugeda,; A. J. Bradley,; S. F. Shi,; F. H. da Jornada,; Y. Zhang,; D. Y. Qiu,; W. Ruan,; S. K. Mo,; Z. Hussain,; Z. X. Shen, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091-1095.
[92]
J. K. Kübler, The exciton binding energy of III-V semiconductor compounds. Phys. Status Solidi B 1969, 35, 189-195.
[93]
K. Hao,; J. F. Specht,; P. Nagler,; L. X. Xu,; K. Tran,; A. Singh,; C. K. Dass,; C Schüller,; T. Korn,; M. Richter, et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun. 2017, 8, 15552.
[94]
J. S. Ross,; P. Klement,; A. M. Jones,; N. J. Ghimire,; J. Q. Yan,; D. G. Mandrus,; T. Taniguchi,; K. Watanabe,; K. Kitamura,; W. Yao, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268-272.
[95]
S. Jo,; N. Ubrig,; H. Berger,; A. B. Kuzmenko,; A. F. Morpurgo, Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 2014, 14, 2019-2025.
[96]
Y. J. Zhang,; T. Oka,; R. Suzuki,; J. T. Ye,; Y. Iwasa, Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725-728.
[97]
R. Cheng,; D. H. Li,; H. L. Zhou,; C. Wang,; A. X. Yin,; S. Jiang,; Y. Liu,; Y. Chen,; Y. Huang,; X. F. Duan, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590-5597.
[98]
L. Britnell,; R. V. Gorbachev,; R. Jalil,; B. D. Belle,; F. Schedin,; M. I. Katsnelson,; L. Eaves,; S. V. Morozov,; A. S. Mayorov,; N. M. R. Peres, et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707-1710.
[99]
G. H. Lee,; Y. J. Yu,; C. Lee,; C. Dean,; K. L. Shepard,; P. Kim,; J. Hone, Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.
[100]
F. Withers,; O. Del Pozo-Zamudio,; A. Mishchenko,; A. P. Rooney,; A. Gholinia,; K. Watanabe,; T. Taniguchi,; S. J. Haigh,; A. K. Geim,; A. I. Tartakovskii, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301-306.
[101]
F. Withers,; O. Del Pozo-Zamudio,; S. Schwarz,; S. Dufferwiel,; P. M. Walker,; T. Godde,; A. P. Rooney,; A. Gholinia,; C. R. Woods,; P. Blake, et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. 2015, 15, 8223-8228.
[102]
C. H. Liu,; G. Clark,; T. Fryett,; S. F. Wu,; J. J. Zheng,; F. Hatami,; X. D. Xu,; A. Majumdar, Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode. Nano Lett. 2017, 17, 200-205.
[103]
R. V. Gorbachev,; I. Riaz,; R R. Nair,; R. Jalil,; L. Britnell,; B. D. Belle,; E. W. Hill,; K. S. Novoselov,; K. Watanabe,; T. Taniguchi, et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465-468.
[104]
F. Pyatkov,; V. Fütterling,; S. Khasminskaya,; B. S. Flavel,; F. Hennrich,; M. M. Kappes,; R. Krupke,; W. H. P. Pernice, Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat. Photonics 2016, 10, 420.
[105]
M. D. Birowosuto,; A. Yokoo,; G. Q. Zhang,; K. Tateno,; E. Kuramochi,; H. Taniyama,; M. Takiguchi,; M. Notomi, Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nat. Mater. 2014, 13, 279-285.
[106]
H. Wang,; L. L. Yu,; Y. H. Lee,; Y. M. Shi,; A. Hsu,; M. L. Chin,; L. J. Li,; M. Dubey,; J. Kong,; T. Palacios, Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674-4680.
[107]
B. Radisavljevic,; M. B. Whitwick,; A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934-9938.
[108]
C. Ruppert,; O. B. Aslan,; T. F. Heinz, Optical properties and band gap of single-and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231-6236.
[109]
Y. Zhu,; Z. Y. Li,; L. L. Zhang,; B. W. Wang,; Z. Q. Luo,; J. Z. Long,; J. Yang,; L. Fu,; Y. R. Lu, High-efficiency monolayer molybdenum ditelluride light-emitting diode and photodetector. ACS Appl. Mater. Interfaces 2018, 10, 43291-43298.
[110]
Y. Q. Bie,; G. Grosso,; M. Heuck,; M. M. Furchi,; Y. Cao,; J. B. Zheng,; D. Bunandar,; E. Navarro-Moratalla,; L. Zhou,; D. K. Efetov, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124-1129.
[111]
R. J. Xu,; S. Zhang,; F. Wang,; J. Yang,; Z. Wang,; J. J. Pei,; Y. W. Myint,; B. B. Xing,; Z. F. Yu,; L. Fu, et al. Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors. ACS Nano 2016, 10, 2046-2053.
[112]
R. J. Xu,; J. Yang,; Y. W. Myint,; J. J. Pei,; H. Yan,; F. Wang,; Y. R. Lu, Exciton brightening in monolayer phosphorene via dimensionality modification. Adv. Mater. 2016, 28, 3493-3498.
[113]
J. J. Wang,; A. Rousseau,; M. Yang,; T. Low,; S. Francoeur,; S. Kéna- Cohen, Mid-infrared polarized emission from black phosphorus light-emitting diodes. Nano Lett. 2020, 20, 3651-3655.
[114]
C. Chen,; F. Chen,; X. L. Chen,; B. C. Deng,; B. Eng,; D. Jung,; Q. S. Guo,; S. F. Yuan,; K. Watanabe,; T. Taniguchi, et al. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 2019, 19, 1488-1493.
[115]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[116]
S. P. Koenig,; R. A. Doganov,; H. Schmidt,; A. H. Castro Neto,; B. Özyilmaz, Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 2014, 104, 103106.
[117]
H. Liu,; A. T. Neal,; Z. Zhu,; Z. Luo,; X. F. Xu,; D. Tománek,; P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.
[118]
M. Buscema,; D. J. Groenendijk,; S. I. Blanter,; G. A. Steele,; H. S. J. van der Zant,; A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347-3352.
[119]
F. N. Xia,; H. Wang,; Y. C. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.
[120]
A. Politi,; J. C. F. Matthews,; J. L. O'Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 2009, 325, 1221.
[121]
M. Koperski,; K. Nogajewski,; A. Arora,; V. Cherkez,; P. Mallet,; J. Y. Veuillen,; J. Marcus,; P. Kossacki,; M. Potemski, Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 2015, 10, 503-506.
[122]
Z. L. Yuan,; B. E. Kardynal,; R. M. Stevenson,; A. J. Shields,; C. J. Lobo,; K. Cooper,; N. S. Beattie,; D. A. Ritchie,; M. Pepper, Electrically driven single-photon source. Science 2002, 295, 102-105.
[123]
G. Clark,; J. R. Schaibley,; J. Ross,; T. Taniguchi,; K. Watanabe,; J. R. Hendrickson,; S. Mou,; W. Yao,; X. D. Xu, Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett. 2016, 16, 3944-3948.
[124]
S. Nakamura,; M. Senoh,; T. Mukai, High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl. Phys. Lett. 1993, 62, 2390-2392.
[125]
D. H. Lien,; M. Amani,; S. B. Desai,; G. H. Ahn,; K. Han,; J. H. He,; J. W. Ager III,; M. C. Wu,; A. Javey, Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat. Commun. 2018, 9, 1229.
[126]
J. Cho,; M. Amani,; D. H. Lien,; H. Kim,; M. Yeh,; V. Wang,; C. L. Tan,; A. Javey, Centimeter-scale and visible wavelength monolayer light-emitting devices. Adv. Funct. Mater. 2020, 30, 1907941.
[127]
M. Paur,; A. J. Molina-Mendoza,; R. Bratschitsch,; K. Watanabe,; T. Taniguchi,; T. Mueller, Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun. 2019, 10, 1709.
[128]
S. Ma,; M. L. Cai,; T. Cheng,; X. H. Ding,; X. Q. Shi,; A. Alsaedi,; T. Hayat,; Y. Ding,; Z. A. Tan,; S. Y. Dai, Two-dimensional organic- inorganic hybrid perovskite: From material properties to device applications. Sci. China Mater. 2018, 61, 1257-1277.
[129]
V. Loryuenyong,; P. Thongpon,; S. Saudmalai,; A. Buasri, The synthesis of 2D CH3NH3PbI3 perovskite films with tunable bandgaps by solution deposition route. Int. J. Photoener. 2019, 2019, 7492453.
[130]
Y. Z. Xue,; J. Yuan,; J. Y. Liu,; S. J. Li, Controllable synthesis of 2D perovskite on different substrates and its application as photodetector. Nanomaterials 2018, 8, 591.
[131]
X. P. Gao,; X. T. Zhang,; W. X. Yin,; H. Wang,; Y. Hu,; Q. B. Zhang,; Z. F. Shi,; V. L. Colvin,; W. W. Yu,; Y. Zhang, Ruddlesden-Popper perovskites: Synthesis and optical properties for optoelectronic applications. Adv. Sci. 2019, 6, 1900941.
[132]
L. Zhang,; Y. C. Liu,; Z. Yang,; S. Z. Liu, Two dimensional metal halide perovskites: Promising candidates for light-emitting diodes. J. Energy Chem. 2019, 37, 97-110.
[133]
C. Fang,; J. Z. Li,; J. Wang,; R. Chen,; H. Z. Wang,; S. G. Lan,; Y. N. Xuan,; H. M. Luo,; P. Fei,; D. H. Li, Controllable growth of two-dimensional perovskite microstructures. CrystEngComm 2018, 20, 6538-6545.
[134]
K. Gauthron,; J. S. Lauret,; L. Doyennette,; G. Lanty,; A. Al Choueiry,; S. J. Zhang,; A. Brehier,; I. Largeau,; O. Mauguin,; J. Bloch, et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2- PbI4 perovskite. Opt. Express 2010, 18, 5912-5919.
[135]
Y. Gao,; E. Z. Shi,; S. B. Deng,; S. B. Shiring,; J. M. Snaider,; C. Liang,; B. Yuan,; R. Y. Song,; S. M. Janke,; A. Liebman-Peláez, et al. Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nat. Chem. 2019, 11, 1151-1157.
[136]
L. N. Quan,; M. J. Yuan,; R. Comin,; O. Voznyy,; E. M. Beauregard,; S. Hoogland,; A. Buin,; A. R. Kirmani,; K. Zhao,; A. Amassian, et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 2016, 138, 2649-2655.
[137]
N. Mercier,; S. Poiroux,; A. Riou,; P. Batail, Unique hydrogen bonding correlating with a reduced band gap and phase transition in the hybrid perovskites (HO(CH2)2NH3)2PbX4 (X = I, Br). Inorg. Chem. 2004, 43, 8361-8366.
[138]
D. Liang,; Y. L. Peng,; Y. P. Fu,; M. J. Shearer,; J. J. Zhang,; J. Y. Zhai,; Y. Zhang,; R. J. Hamers,; T. L. Andrew,; S. Jin, Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 2016, 10, 6897-6904.
[139]
N. J. Jeon,; J. H. Noh,; Y. C. Kim,; W. S. Yang,; S. Ryu,; S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897-903.
[140]
C. Bi,; Q. Wang,; Y. C. Shao,; Y. B. Yuan,; Z. G. Xiao,; J. S. Huang, Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.
[141]
J. Y. Liu,; Y. Z. Xue,; Z. Y. Wang,; Z. Q. Xu,; C. X. Zheng,; B. Weber,; J. C. Song,; Y. S. Wang,; Y. R. Lu,; Y. P. Zhang, et al. Two- dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS Nano 2016, 10, 3536-3542.
[142]
Y. Z. Zhang,; J. H. Chen,; X. M. Lian,; M. C. Qin,; J. Li,; T. R. Andersen,; X. H. Lu,; G. Wu,; H. Y. Li,; H. Z. Chen, Highly efficient guanidinium-based quasi 2D perovskite solar cells via a two-step post-treatment process. Small Methods 2019, 3, 1900375.
[143]
M. M. Tavakoli,; L. L. Gu,; Y. Gao,; C. Reckmeier,; J. He,; A. L. Rogach,; Y. Yao,; Z. Y. Fan, Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci. Rep. 2015, 5, 14083.
[144]
M. Z. Liu,; M. B. Johnston,; H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.
[145]
S. T. Ha,; X. F. Liu,; Q. Zhang,; D. Giovanni,; T. C. Sum,; Q. H. Xiong, Synthesis of organic-inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2014, 2, 838-844.
[146]
Y. P. Wang,; Y. F. Shi,; G. Q. Xin,; J. Lian,; J. Shi, Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 2015, 15, 4741-4749.
[147]
E. Z. Shi,; Y. Gao,; B. P. Finkenauer,; ; A. H. Coffey,; L. T. Dou, Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 2018, 47, 6046-6072.
[148]
K. Leng,; W. Fu,; Y. P. Liu,; M. Chhowalla,; K. P. Loh, From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 2020, 5, 482-500.
[149]
T. M. Koh,; V. Shanmugam,; J. Schlipf,; L. Oesinghaus,; P. Müller- Buschbaum,; N. Ramakrishnan,; V. Swamy,; N. Mathews,; P. P. Boix,; S. G. Mhaisalkar, Nanostructuring mixed-dimensional perovskites: A route toward tunable, efficient photovoltaics. Adv. Mater. 2016, 28, 3653-3661.
[150]
T. Ishihara,; J. Takahashi,; T. Goto, Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun 1989, 69, 933-936.
[151]
J. A. Sichert,; Y. Tong,; N. Mutz,; M. Vollmer,; S. Fischer,; K Z. Milowska,; R. García Cortadella,; B. Nickel,; C. Cardenas-Daw,; J. K. Stolarczyk, et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015, 15, 6521-6527.
[152]
L. L. Mao,; C. C. Stoumpos,; M. G. Kanatzidis, Two-dimensional hybrid halide perovskites: Principles and promises. J. Am. Chem. Soc. 2019, 141, 1171-1190.
[153]
V. L. P. Guerra,; P. Kovaříček,; V. Valeš,; K. Drogowska,; T. Verhagen,; J. Vejpravova,; L. Horák,; A. Listorti,; S. Colella,; M. Kalbáč, Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene. Nanoscale 2018, 10, 3198-3211.
[154]
E. R. Dohner,; E. T. Hoke,; H. I. Karunadasa, Self-assembly of broadband white-light emitters. J. Am. Chem. Soc. 2014, 136, 1718-1721.
[155]
J. S. Manser,; J. A. Christians,; P. V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956-13008.
[156]
Y. Sun,; L. Zhang,; N. N. Wang,; S. T. Zhang,; Yu. Cao,; Y. F. Miao,; M. M. Xu,; H. Zhang,; H. Li,; C. Yi, et al. The formation of perovskite multiple quantum well structures for high performance light-emitting diodes. npj Flex. Electron. 2018, 2, 12.
[157]
S. T. Zhang,; C. Yi,; N. N. Wang,; Y. Sun,; W. Zou,; Y. Q. Wei,; Y. Cao,; Y. F. Miao,; R. Z. Li,; Y. Yin, et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum Wells. Adv. Mater. 2017, 29, 1606600.
[158]
N. N. Wang,; L. Cheng,; R. Ge,; S. T. Zhang,; Y. F. Miao,; W. Zou,; C. Yi,; Y. Sun,; Y. Cao,; R. Yang, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 2016, 10, 699-704.
[159]
G. Grancini,; M. K. Nazeeruddin, Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 2019, 4, 4-22.
[160]
C. C. Stoumpos,; D. H. Cao,; D. J. Clark,; J. Young,; J. M. Rondinelli,; J. I. Jang,; J. T. Hupp,; M. G. Kanatzidis, Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 2016, 28, 2852-2867.
[161]
N. R. Venkatesan,; J. G. Labram,; M. L. Chabinyc, Charge-carrier dynamics and crystalline texture of layered Ruddlesden-Popper hybrid lead iodide perovskite thin films. ACS Energy Lett. 2018, 3, 380-386.
[162]
A. Z. Chen,; M. Shiu,; J. H. Ma,; M. R. Alpert,; D. P. Zhang,; B. J. Foley,; D. M. Smilgies,; S. H. Lee,; J. J. Choi, Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 2018, 9, 1336.
[163]
X. Hong,; T. Ishihara,; A. V. Nurmikko, Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 1992, 45, 6961-6964.
[164]
M. Kumagai,; T. Takagahara, Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys. Rev. B 1989, 40, 12359.
[165]
L. T. Dou, Emerging two-dimensional halide perovskite nanomaterials. J. Mater. Chem. C 2017, 5, 11165-11173.
[166]
N. Kitazawa,; Y. Watanabe, Optical properties of natural quantum- well compounds (C6H5-CnH2n-NH3)2PbBr4 (n = 1-4). J. Phys. Chem. Solids 2010, 71, 797-802.
[167]
D. B. Mitzi,; C. Feild,; W. T. A. Harrison,; A. M. Guloy, Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369, 467-469.
[168]
E. D. Jones,; T. J. Drummond,; H. P. Hjalmarson,; J. E. Schirber, Photoluminescence studies of GaAs/AlAs short period superlattices. Superlatt. Microstruct. 1988, 4, 233-236.
[169]
O. Yaffe,; A. Chernikov,; Z. M. Norman,; Y. Zhong,; A. Velauthapillai,; A. van der Zande,; J. S. Owen,; T. F. Heinz, Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B 2015, 92, 045414.
[170]
J. Byun,; H. Cho,; C. Wolf,; M. Jang,; A. Sadhanala,; R. H. Friend,; H. Yang,; T. W. Lee, Efficient visible quasi-2D perovskite light- emitting diodes. Adv. Mater. 2016, 28, 7515-7520.
[171]
M. J. Yuan,; L. N. Quan,; R. Comin,; G. Walters,; R. Sabatini,; O. Voznyy,; S. Hoogland,; Y. B. Zhao,; E. M. Beauregard,; P. Kanjanaboos, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872-877.
[172]
F. Deschler,; M. Price,; S. Pathak,; L. E. Klintberg,; D. D. Jarausch,; R. Higler,; S. Hüttner,; T. Leijtens,; S. D. Stranks,; H. J. Snaith, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421-1426.
[173]
J. J. Zhao,; Y. H. Deng,; H. T. Wei,; X. P. Zheng,; Z. H. Yu,; Y. C. Shao,; J. E. Shield,; J. S. Huang, Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 2017, 3, eaao5616.
[174]
I. C. Smith,; E. T. Hoke,; D. Solis-Ibarra,; M. D. McGehee,; H. I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem., Int. Ed. 2014, 53, 11232-11235.
[175]
B. Cai,; X. M. Li,; Y. Gu,; M. Harb,; J. H. Li,; M. Q. Xie,; F. Cao,; J. Z. Song,; S. L. Zhang,; L. Cavallo, et al. Quantum confinement effect of two-dimensional all-inorganic halide perovskites. Sci. China Mater. 2017, 60, 811-818.
[176]
Y. Lin,; Y. Bai,; Y. J. Fang,; Q. Wang,; Y. H. Deng,; J. S. Huang, Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2017, 2, 1571-1572.
[177]
X. Xiao,; J. Dai,; Y. J. Fang,; J. J. Zhao,; X. P. Zheng,; S. Tang,; P. N. Rudd,; X. C. Zeng,; J. S. Huang, Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 2018, 3, 684-688.
[178]
X. L. Yang,; X. W. Zhang,; J. X. Deng,; Z. M. Chu,; Q. Jiang,; J. H. Meng,; P. Y. Wang,; L. Q. Zhang,; Z. G. Yin,; J. B. You, Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570.
[179]
J. Xing,; F. Yan,; Y. W. Zhao,; S. Chen,; H. K. Yu,; Q. Zhang,; R. G. Zeng,; H. V. Demir,; X. W. Sun,; A. Huan, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 2016, 10, 6623-6630.
[180]
H. Cho,; S. H. Jeong,; M. H. Park,; Y. H. Kim,; C. Wolf,; C. L. Lee,; J. H. Heo,; A. Sadhanala,; N. Myoung,; S. Yoo, et al. Overcoming the electroluminescence efficiency limitations of perovskite light- emitting diodes. Science 2015, 350, 1222-1225.
[181]
Z. K. Tan,; R. S. Moghaddam,; M. L. Lai,; P. Docampo,; R. Higler,; F. Deschler,; M. Price,; A. Sadhanala,; L. M. Pazos,; D. Credgington, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687-692.
[182]
J. P. Wang,; N. N. Wang,; Y. Z. Jin,; J. J. Si,; Z. K. Tan,; H. Du,; L. Cheng,; X. L. Dai,; S. Bai,; H. P. He, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 2015, 27, 2311-2316.
[183]
O. Voznyy,; B. R. Sutherland,; A. H. Ip,; D. Zhitomirsky,; E. H. Sargent, Engineering charge transport by heterostructuring solution- processed semiconductors. Nat. Rev. Mater. 2017, 2, 17026.
[184]
M. Y. Ban,; Y. T. Zou,; J. P. H. Rivett,; Y. G. Yang,; T. H. Thomas,; Y. S. Tan,; T. Song,; X. Y. Gao,; D. Credgington,; F. Deschler, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 2018, 9, 3892.
[185]
M. Era,; S. Morimoto,; T. Tsutsui,; S. Saito, Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 1994, 65, 676-678.
[186]
D. B. Mitzi, Solution-processed inorganic semiconductors. J. Mater. Chem. 2004, 14, 2355-2365.
[187]
Y. H. Kim,; H. Cho,; T. W. Lee, Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. USA 2016, 113, 11694-11702.
[188]
Z. C. Li,; Z. M. Chen,; Y. C. Yang,; Q. F. Xue,; H. L. Yip,; Y. Cao, Modulation of recombination zone position for quasi-two- dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 2019, 10, 1027.
[189]
M. T. Yu,; C. Yi,; N. N. Wang,; L. D. Zhang,; R. M. Zou,; Y. F. Tong,; H. Chen,; Y. Cao,; Y. R. He,; Y. Wang, et al. Control of barrier width in perovskite multiple quantum wells for high performance green light-emitting diodes. Adv. Opt. Mater. 2019, 7, 1801575.
[190]
W. Zou,; R. Z. Li,; S. T. Zhang,; Y. L. Liu,; N. N. Wang,; Y. Cao,; Y. F. Miao,; M. M. Xu,; Q. Guo,; D. W. Di, et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 2018, 9, 608.
[191]
K. B. Lin,; J. Xing,; L. N. Quan,; F. P. G. de Arquer,; X. W. Gong,; J. X. Lu,; L. Q. Xie,; W. J. Zhao,; D. Zhang,; C. Z. Yan, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245-248.
[192]
S. Y. Sun,; T. Salim,; N. Mathews,; M. Duchamp,; C. Boothroyd,; G. C. Xing,; T. C. Sum,; Y. M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399-407.
[193]
J. S. Manser,; P. V. Kamat, Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 2014, 8, 737-743.
[194]
K. Tanaka,; T. Takahashi,; T. Ban,; T. Kondo,; K. Uchida,; N. Miura, Comparative study on the excitons in lead-halide-based perovskite- type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003, 127, 619-623.
[195]
V. D’Innocenzo,; G. Grancini,; M. J. P. Alcocer,; A. R. S. Kandada,; S. D. Stranks,; M M. Lee,; G. Lanzani,; H. J. Snaith,; A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586.
[196]
S. Kondo,; K. Takahashi,; T. Nakanish,; T. Saito,; H. Asada,; H. Nakagawa, High intensity photoluminescence of microcrystalline CsPbBr3 films: Evidence for enhanced stimulated emission at room temperature. Curr. Appl. Phys. 2007, 7, 1-5.
[197]
K. Tanaka,; T. Takahashi,; T. Kondo,; K. Umeda,; K. Ema,; T. Umebayashi,; K. Asai,; K. Uchida,; N. Miura, Electronic and excitonic structures of inorganic-organic perovskite-type quantum- well crystal (C4H9NH3)2PbBr4. Jpn. J. Appl. Phys. 2005, 44, 5923-5932.
[198]
B. E. Cohen,; M. Wierzbowska,; L. Etgar, High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. Sustainable Energy Fuels 2017, 1, 1935-1943.
[199]
J. Li,; L. H. Luo,; H. W. Huang,; C. Ma,; Z. Z. Ye,; J. Zeng,; H. P. He, 2D behaviors of excitons in cesium lead halide perovskite nanoplatelets. J. Phys. Chem. Lett. 2017, 8, 1161-1168.
[200]
H. W. Hu,; T. Salim,; B. B. Chen,; Y. M. Lam, Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes. Sci. Rep. 2016, 6, 33546.
[201]
L. N. Quan,; Y. B Zhao,, F. P. García de Arquer,; R. Sabatini,; G. Walters,; O. Voznyy,; R. Comin,; Y. Y. Li,; J. Z. Fan,; H. R. Tan, et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 2017, 17, 3701-3709.
[202]
S. Kumar,; J. Jagielski,; N. Kallikounis,; Y. H. Kim,; C. Wolf,; F. Jenny,; T. Tian,; C. J. Hofer,; Y. C. Chiu,; W. J. Stark, et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett. 2017, 17, 5277-5284.
[203]
W. W. Zhang,; X. W. Yan,; W. Gao,; J. Dong,; R. Q. Ma,; L. Liu,; M. Zhang, The dependence of chain length of phenylalkylamine on the performance of perovskite light emitting diode. Org. Electron. 2019, 65, 56-62.
Publication history
Copyright

Publication history

Received: 12 May 2020
Revised: 28 August 2020
Accepted: 22 September 2020
Published: 06 November 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return