Journal Home > Volume 14 , Issue 3

Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (~ cm2) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO2/Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering

Show Author's information Carlo Mennucci§Debasree Chowdhury§Giacomo ManzatoMatteo BarelliRoberto ChittofratiChristian MartellaFrancesco Buatier de Mongeot( )
Dipartimento di Fisica, Università degli Studi di Genova, via Dodecaneso 33, I-16146, Genova, Italy

§ Carlo Mennucci and Debasree Chowdhury contributed equally to this work.

Present address: CNR-IMM Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, I-20864, Italy

Abstract

Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (~ cm2) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO2/Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.

Keywords: transparent electrodes, interference lithography, nanofabrication, nanostripes, plasmonic dimers, surface lattice resonances

References(63)

[1]
S. A. Maier, Plasmonics: Fundamentals and Applications; Springer: New York, 2007.
DOI
[2]
N. F. Yu,; F. Capasso, Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139-150.
[3]
H. K. Yu,; Y. S. Peng,; Y. Yang,; Z. -Y. Li, Plasmon-enhanced light- matter interactions and applications. npj Computat. Mater. 2019, 5, 45.
[4]
T. Yu,; Q. S. Wei, Plasmonic molecular assays: Recent advances and applications for mobile health. Nano Res. 2018, 11, 5439-5473.
[5]
A. Kristensen,; J. K. W. Yang,; S. I. Bozhevolnyi,; S. Link,; P. Nordlander,; N. J. Halas,; N. A. Mortensen, Plasmonic colour generation. Nat. Rev. Mat. 2017, 2, 16088.
[6]
H. A. Atwater,; A. Polman, Plasmonics for improved photovoltaic devices. In Materials for Sustainable Energy; co-Published with Macmillan Publishers Ltd: UK, 2010; pp 1-11.
DOI
[7]
M. Vala,; J. Homola, Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays. Opt. Express 2014, 22, 18778-18789.
[8]
J. Van De Groep,; P. Spinelli,; A. Polman, Transparent conducting silver nanowire networks. Nano Lett. 2012, 12, 3138-3144.
[9]
M. C. Giordano,; D. Repetto,; C. Mennucci,; A. Carrara,; F. B. De Mongeot, Template-assisted growth of transparent plasmonic nanowire electrodes. Nanotechnology 2016, 27, 495201.
[10]
F. Xie,; J. S. Pang,; A. Centeno,; M. P. Ryan,; D. J. Riley,; N. M. Alford, Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 2013, 6, 496-510.
[11]
S. Aksu,; M. Huang,; A. Artar,; A. A. Yanik,; S. Selvarasah,; M. R. Dokmeci,; H. Altug, Flexible plasmonics on unconventional and nonplanar substrates. Adv. Mat. 2011, 23, 4422-4430.
[12]
J. R. Dunklin,; G. T. Forcherio,; D. K. Roper, Gold nanoparticle- polydimethylsiloxane films reflect light internally by optical diffraction and MIE scattering. Mater. Res. Express. 2015, 2, 085005.
[13]
F. Laible,; D. A. Gollmer,; S. Dickreuter,; D. P. Kern,; M. Fleischer, Continuous reversible tuning of the gap size and plasmonic coupling of bow tie nanoantennas on flexible substrates. Nanoscale 2018, 10, 14915-14922.
[14]
E. S. Prikhozhdenko,; D. N. Bratashov,; D. A. Gorin,; A. M. Yashchenok, Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 2018, 11, 4468-4488.
[15]
K. C. Xu,; R. Zhou,; K. Takei,; M. H. Hong, Toward flexible surface- enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925.
[16]
K. Hasna,; A. Antony,; J. Puigdollers,; K. R. Kumar,; M. K. Jayaraj, Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates. Nano Res. 2016, 9, 3075-3083.
[17]
K. L. Lee,; P. W. Chen,; S. H. Wu,; J. B. Huang,; S. Y. Yang,; P. K. Wei, Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. ACS Nano 2012, 6, 2931-2939.
[18]
C. H. Chen,; T. H. Yu,; Y. C. Lee, Direct metal transfer lithography for fabricating wire-grid polarizer on flexible plastic substrate. J. Microelectromechanical Syst. 2011, 20, 916-921.
[19]
F. T. Meng,; G. Luo,; I. Maximov,; L. Montelius,; J. K. Chu,; H. Q. Xu, Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate. Microelectron. Eng. 2011, 88, 3108-3112.
[20]
L. M. S. Aas,; M. Kildemo,; C. Martella,; M. C. Giordano,; D. Chiappe,; F. B. De Mongeot, Optical properties of biaxial nanopatterned gold plasmonic nanowired grid polarizer. Opt. Express 2013, 21, 30918-30931.
[21]
M. Barelli,; D. Repetto,; F. B. De Mongeot, Infrared plasmonics via self-organized anisotropic wrinkling of Au/PDMS nanoarrays. ACS Appl. Polym. Mater. 2019, 1, 1334-1340.
[22]
M. Song,; J. H. Park,; C. S. Kim,; D. H. Kim,; Y. C. Kang,; S. H. Jin,; W. Y. Jin,; J. W. Kang, Highly flexible and transparent conducting silver nanowire/ZnO composite film for organic solar cells. Nano Res. 2014, 7, 1370-1379.
[23]
S. Gong,; Y. M. Zhao,; L. W. Yap,; Q. Q. Shi,; Y. Wang,; J. A. P. B. Bay,; D. T. H. Lai,; H. Uddin,; W. Cheng, Fabrication of highly transparent and flexible NanoMesh electrode via self-assembly of ultrathin gold nanowires. Adv. Electron. Mater. 2016, 2, 1600121.
[24]
P. E. Lyons,; S. De,; J. Elias,; M. Schamel,; L. Philippe,; A. T. Bellew,; J. J. Boland,; J. N. Coleman, High-performance transparent conductors from networks of gold nanowires. J. Phys. Chem. Lett. 2011, 2, 3058-3062.
[25]
M. W. Knight,; H. Sobhani,; P. Nordlander,; N. J. Halas, Photodetection with active optical antennas. Science 2011, 332, 702-704.
[26]
M. J. Mendes,; A. Luque,; I. Tobías,; A. Martí, Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells. Appl. Phys. Lett. 2009, 95, 071105.
[27]
F. J. Beck,; A. Polman,; K. R. Catchpole, Tunable light trapping for solar cells using localized surface plasmons. J. Appl. Phys. 2009, 105, 114310.
[28]
P. C. P. Bouten,; P. J. Slikkerveer,; Y. Leterrier, Mechanics of ITO on plastic substrates for flexible displays. In Flexible Flat Panel Displays. G. P. Crawford, Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2005; pp 99-120.
[29]
W. S. Wong,; A. Salleo, Flexible Electronics: Materials and Applications; Springer: New York, 2009.
[30]
R. Gupta,; K. D. M. Rao,; S. Kiruthika,; G. U. Kulkarni, Visibly transparent heaters. ACS Appl. Mater. Interfaces 2016, 8, 12559-12575.
[31]
R. Holze, P. Hendra, C. Jones, and G. Warnes: Fourier transform Raman spectroscopy-instrumentation and chemical applications, Ellis Horwood, Chichester, 1991, ISBN 0-13-327032-7, 311 pages, Preis: $90.50. Ber. Bunsengesellschaft Phys. Chem. 1993, 97, 1500-1501.
[32]
W. C. Zúñiga,; V. Jones,; S. M. Anderson,; A. Echevarria,; N. L. Miller,; C. Stashko,; D Schmolze,; P. D. Cha,; R. Kothari; Y. M. Fong, et al. Raman spectroscopy for rapid evaluation of surgical margins during breast cancer lumpectomy. Sci. Rep. 2019, 9, 14639.
[33]
C. Noguez, Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806-3819.
[34]
J. S. Sekhon,; S. S. Verma, Rational selection of nanorod plasmons: Material, size, and shape dependence mechanism for optical sensors. Plasmonics 2012, 7, 453-459.
[35]
M. C. Giordano,; A. Foti,; E. Messina,; P. G. Gucciardi,; D. Comoretto,; F. B. Buatier De Mongeot, SERS amplification from self- organized arrays of plasmonic nanocrescents. ACS Appl. Mater. Interfaces 2016, 8, 6629-6638.
[36]
Y. H. Sun,; L. Jiang,; L. B. Zhong,; Y. Y. Jiang,; X. D. Chen, Towards active plasmonic response devices. Nano Res. 2015, 8, 406-417.
[37]
A. Dmitriev,; T. Pakizeh,; M. Käll,; D. S. Sutherland, Gold-silica-gold nanosandwiches: Tunable bimodal plasmonic resonators. Small 2007, 3, 294-299.
[38]
J. A. Fan,; K. Bao,; L. Sun,; J. M. Bao,; V. N. Manoharan,; P. Nordlander,; F. Capasso, Plasmonic mode engineering with templated self- assembled nanoclusters. Nano Lett. 2012, 12, 5318-5324.
[39]
J. Theiss,; M. Aykol,; P. Pavaskar,; S. B. Cronin, Plasmonic mode mixing in nanoparticle dimers with nm-separations via substrate- mediated coupling. Nano Res. 2014, 7, 1344-1354.
[40]
S. Baur,; S. Sanders,; A. Manjavacas, Hybridization of lattice resonances. ACS Nano 2018, 12, 1618-1629.
[41]
E. Fortunato,; D. Ginley,; H. Hosono,; D. C. Paine, Transparent conducting oxides for photovoltaics. MRS Bull. 2007, 32, 242-247.
[42]
M. Darvishzadeh-Varcheie,; W. J. Thrift,; M. Kamandi,; R. Ragan,; F. Capolino, Two-scale structure for giant field enhancement: Combination of Rayleigh anomaly and colloidal plasmonic resonance. Phys. Rev. Appl. 2019, 11, 054057.
[43]
C. Mennucci,; S. Del Sorbo,; S. Pirrotta,; M. Galli,; L. C. Andreani,; C. Martella,; M. C. Giordano,; F. B. De Mongeot, Light scattering properties of self-organized nanostructured substrates for thin-film solar cells. Nanotechnology 2018, 29, 355301.
[44]
D. Repetto,; M. C. Giordano,; A. Foti,; P. G. Gucciardi,; C. Mennucci,; F. B. De Mongeot, SERS amplification by ultra-dense plasmonic arrays on self-organized PDMS templates. Appl. Surf. Sci. 2018, 446, 83-91.
[45]
D. Chowdhury,; B. Satpati,; D. Ghose, Temperature and high fluence induced ripple rotation on Si(100) surface. Mater. Res. Express 2016, 3, 125003.
[46]
C. P. Fucetola,; H. Korre,; K. K. Berggren, Low-cost interference lithography. J. Vac. Sci. Technol. B: Microelectron Nanometer Struct. 2009, 27, 2958.
[47]
M. C. Giordano,; S. Longhi,; M. Barelli,; A. Mazzanti,; F. B. De Mongeot,; G. D. Valle, Plasmon hybridization engineering in self-organized anisotropic metasurfaces. Nano Res. 2018, 11, 3943-3956.
[48]
M. C. Giordano,; F. B. De Mongeot, Anisotropic nanoscale wrinkling in solid-state substrates. Adv. Mater. 2018, 30, 1801840.
[49]
M. Guerrisi,; R. Rosei,; P. Winsemius, Splitting of the interband absorption edge in Au. Phys. Rev. B 1975, 12, 557-563.
[50]
S. Gong,; W. Schwalb,; Y. W. Wang,; Y. Chen,; Y. Tang,; J. Si,; B. Shirinzadeh,; W. L. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.
[51]
H. Y. Chen,; M. C. Tu, Nanowire-based transparent conductive electrodes. In Nanowire Electronics. G. Z. Shen,; Y. L. Chueh,, Eds.; Springer: Singapore, 2019; pp 159-200.
[52]
D. Repetto,; M. C. Giordano,; C. Martella,; F. B. De Mongeot, Transparent aluminium nanowire electrodes with optical and electrical anisotropic response fabricated by defocused ion beam sputtering. Appl. Surf. Sci. 2015, 327, 444-452.
[53]
L. Rayleigh, On the dynamical theory of gratings. Proc. R. Soc. Mathem. Phys. Charact. 1907, 79, 399-416.
[54]
L. Rayleigh, III. Note on the remarkable case of diffraction spectra described by Prof. Wood. The Lond. Edinb. Dubl. Phil. l Mag. J. Sci. 1907, 14, 60-65.
[55]
J. M. Park,; K. S. Nalwa,; W. Leung,; K. Constant,; S. Chaudhary,; K. M. Ho, Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography. Nanotechnology 2010, 21, 215301.
[56]
A. Hessel,; A. A. Oliner, A new theory of wood’s anomalies on optical gratings. Appl. Opt. 1965, 4, 1275-1279.
[57]
A. A. Maradudin,; I. Simonsen,; J. Polanco,; R. M. Fitzgerald, Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating. J. Opt. 2016, 18, 024004.
[58]
C. Cherqui,; M. R. Bourgeois,; D. Q. Wang,; G. C. Schatz, Plasmonic surface lattice resonances: Theory and computation. Acc. Chem. Res. 2019, 52, 2548-2558.
[59]
V. G. Kravets,; A. V. Kabashin,; W. L. Barnes,; A. N. Grigorenko, Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev. 2018, 118, 5912-5951.
[60]
G. Laurent,; N. Félidj,; J. Aubard,; G. Lévi,; J. R. Krenn,; A. Hohenau,; G. Schider,; A. Leitner,; F. R. Aussenegg, Evidence of multipolar excitations in surface enhanced Raman scattering. Phys. Rev. B 2005, 71, 045430.
[61]
E. R. Encina,; E. A. Coronado, Resonance conditions for multipole plasmon excitations in noble metal nanorods. J. Phys. Chem. C 2007, 111, 16796-16801.
[62]
E. K. Payne,; K. L. Shuford,; S. Park,; G. C. Schatz,; C. A. Mirkin, Multipole plasmon resonances in gold nanorods. J. Phys. Chem. B 2006, 110, 2150-2154.
[63]
I. Horcas,; R. Fernández,; J. M. Gómez-Rodríguez,; J. Colchero,; J. Gómez-Herrero,; A. M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.
File
12274_2020_3125_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 February 2020
Revised: 11 September 2020
Accepted: 14 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© The Author(s) 2020

Acknowledgements

Financial support is gratefully acknowledged from Ministero dell’Università e della Ricerca Scientifica (MIUR) through the PRIN 2015 Grant 2015WTW7J3, from Compagnia di San Paolo in the framework of Project ID ROL 9361, and from MAECI in the framework of the Italy-Egypt bilateral protocol. One of the authors (D.C.) acknowledges ICTP, Trieste, Italy for the TRIL Fellowship.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return