Journal Home > Volume 14 , Issue 2

The concept of "robust dynamics" describes the incorporation of mechanically interlocked molecules (MIMs) into metal-organic framework (MOF) materials such that large amplitude motions (e.g., rotation or translation of a macrocycle) can occur inside the free volume pore of the MOF. To aid in the preparation of such materials, reticular synthesis was used herein to design rigid molecular building blocks with predetermined ordered structures starting from the well-known MOF NOTT-101. New linkers were synthesized that have a T-shape, based on a triphenylene tetracarboxylate strut, and their incorporation into Cu(II)-based MOFs was investigated. The single-crystal structures of three new MOFs, UWCM-12 (fof), β-UWCM-13 (loz), UWCM-14 (lil), with naked T-shaped linkers were determined; β-UWCM-13 is the first reported example of the loz topology. A fourth MOF, UWDM-14 (lil) is analogous to UWCM-14 (lil) but contains a [2]rotaxane linker. Variable-temperature, 2H solid-state NMR was used to probe the dynamics of a 24-membered macrocycle threaded onto the MOF skeleton.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Applying reticular synthesis to the design of Cu-based MOFs with mechanically interlocked linkers

Show Author's information Alexander J. Stirk1Benjamin H. Wilson1Christopher A. O’Keefe1Hazem Amarne2Kelong Zhu3Robert W. Schurko4Stephen J. Loeb1,( )
Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3B4, Canada
Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA

Abstract

The concept of "robust dynamics" describes the incorporation of mechanically interlocked molecules (MIMs) into metal-organic framework (MOF) materials such that large amplitude motions (e.g., rotation or translation of a macrocycle) can occur inside the free volume pore of the MOF. To aid in the preparation of such materials, reticular synthesis was used herein to design rigid molecular building blocks with predetermined ordered structures starting from the well-known MOF NOTT-101. New linkers were synthesized that have a T-shape, based on a triphenylene tetracarboxylate strut, and their incorporation into Cu(II)-based MOFs was investigated. The single-crystal structures of three new MOFs, UWCM-12 (fof), β-UWCM-13 (loz), UWCM-14 (lil), with naked T-shaped linkers were determined; β-UWCM-13 is the first reported example of the loz topology. A fourth MOF, UWDM-14 (lil) is analogous to UWCM-14 (lil) but contains a [2]rotaxane linker. Variable-temperature, 2H solid-state NMR was used to probe the dynamics of a 24-membered macrocycle threaded onto the MOF skeleton.

Keywords: metal-organic frameworks, reticular chemistry, mechanically interlocked molecules, rotaxane

References(37)

[1]
R. A. Bissell,; E. Córdova,; A. E. Kaifer,; J. F. Stoddart, A chemically and electrochemically switchable molecular shuttle. Nature 1994, 369, 133-137.
[2]
C. J. Bruns,; J. F. Stoddart, The Nature of the Mechanical Bond: From Molecules to Machines; John Wiley & Sons: New York, 2017.
[3]
S. Erbas-Cakmak,; D. A. Leigh,; C. T. McTernan,; A. L. Nussbaumer, Artificial molecular machines. Chem. Rev. 2015, 115, 10081-10206.
[4]
G. Gholami,; K. L. Zhu,; G. Baggi,; E. Schott,; X. Zarate,; S. J. Loeb, Influence of axle length on the rate and mechanism of shuttling in rigid H-shaped [2]rotaxanes. Chem. Sci. 2017, 8, 7718-7723.
[5]
P. Martinez-Bulit,; B. H. Wilson,; S. J. Loeb, One-pot synthesis of porphyrin-based [5]rotaxanes. Org. Biomol. Chem. 2020, 18, 4395-4400.
[6]
K. L. Zhu,; G. Baggi,; S. J. Loeb, Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat. Chem. 2018, 10, 625-630.
[7]
B. H. Wilson,; S. J. Loeb, Integrating the mechanical bond into metal-organic frameworks. Chem 2020, 6, 1604-1612.
[8]
P. Martinez-Bulit,; A. J. Stirk,; S. J. Loeb, Rotors, motors, and machines inside metal-organic frameworks. Trends Chem. 2019, 1, 588-600.
[9]
H. X. Deng,; M. A. Olson,; J. F. Stoddart,; O. M. Yaghi, Robust dynamics. Nat. Chem. 2010, 2, 439-443.
[10]
N. Farahani,; K. L. Zhu,; C. A. O'Keefe,; R. W. Schurko,; S. J. Loeb, Thermally driven dynamics of a rotaxane wheel about an imidazolium axle inside a metal-organic framework. ChemPlusChem 2016, 81, 836-841.
[11]
P. Martinez-Bulit,; C. A. O’Keefe,; K. L. Zhu,; R. W. Schurko,; S. J. Loeb, Solvent and steric influences on rotational dynamics in porphyrinic metal-organic frameworks with mechanically interlocked pillars. Cryst. Growth Des. 2019, 19, 5679-5685.
[12]
G. Gholami,; B. H. Wilson,; K. L. Zhu,; C. A. O'Keefe,; R. Schurko,; S. J. Loeb, Exploring the dynamics of Zr-based metal-organic frameworks containing mechanically interlocked molecular shuttles. Faraday Discuss., in press, .
[13]
Q. S. Chen,; J. L. Sun,; P. Li,; I. Hod,; P. Z. Moghadam,; Z. S. Kean,; R. Q. Snurr,; J. T. Hupp,; O. K. Farha,; J. F. Stoddart, A redox-active bistable molecular switch mounted inside a metal-organic framework. J. Am. Chem. Soc. 2016, 138, 14242-14245.
[14]
V. N. Vukotic,; C. A. O’Keefe,; K. L. Zhu,; K. J. Harris,; C. To,; R. W. Schurko,; S. J. Loeb, Mechanically interlocked linkers inside metal-organic frameworks: Effect of ring size on rotational dynamics. J. Am. Chem. Soc. 2015, 137, 9643-9651.
[15]
K. L. Zhu,; V. N. Vukotic,; C. A. O’Keefe,; R. W. Schurko,; S. J. Loeb, Metal-organic frameworks with mechanically interlocked pillars: Controlling ring dynamics in the solid-state via a reversible phase change. J. Am. Chem. Soc. 2014, 136, 7403-7409.
[16]
V. N. Vukotic,; K. J. Harris,; K. L. Zhu,; R. W. Schurko,; S. J. Loeb, Metal-organic frameworks with dynamic interlocked components. Nat. Chem. 2012, 4, 456-460.
[17]
K. L. Zhu,; C. A. O'Keefe,; V. N. Vukotic,; R. W. Schurko,; S. J. Loeb, A molecular shuttle that operates inside a metal-organic framework. Nat. Chem. 2015, 7, 514-519.
[18]
P. R. McGonigal,; P. Deria,; I. Hod,; P. Z. Moghadam,; A. J. Avestro,; N. E. Horwitz,; I. C. Gibbs-Hall,; A. K. Blackburn,; D. Y. Chen,; Y. Y. Botros, et al. Electrochemically addressable trisradical rotaxanes organized within a metal-organic framework. Proc. Natl. Acad. Sci. USA 2015, 112, 11161-11168.
[19]
O. M. Yaghi,; M. O'Keeffe,; N. W. Ockwig,; H. K. Chae,; M. Eddaoudi,; J. Kim, Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
[20]
X. Lin,; I. Telepeni,; A. J. Blake,; A. Dailly,; C. M. Brown,; J. M. Simmons,; M. Zoppi,; G. S. Walker,; K. M. Thomas,; T. J. Mays, et al. High capacity hydrogen adsorption in Cu (II) tetracarboxylate framework materials: The role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 2009, 131, 2159-2171.
[21]
Y. Yan,; S. H. Yang,; A. J. Blake,; M. Schröder, Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. Acc. Chem. Res. 2014, 47, 296-307.
[22]
X. Lin,; J. H. Jia,; X. B. Zhao,; K. M. Thomas,; A. J. Blake,; G. S. Walker,; N. R. Champness,; P. Hubberstey,; M. Schröder, High H2 adsorption by coordination-framework materials. Angew. Chem., Int. Ed. 2006, 45, 7358-7364.
[23]
J. F. Cai,; Y. C. Lin,; J. C. Yu,; C. D. Wu,; L. Chen,; Y. J. Cui,; Y. Yang,; B. L. Chen,; G. D. Qian, A NbO type microporous metal-organic framework constructed from a naphthalene derived ligand for CH4 and C2H2 storage at room temperature. RSC Adv. 2014, 4, 49457-49461.
[24]
N. Noujeim,; K. L. Zhu,; V. N. Vukotic,; S. J. Loeb, [2]Pseudorotaxanes from T-shaped benzimidazolium axles and [24]crown-8 wheels. Org. Lett. 2012, 14, 2484-2487.
[25]
A. F. M. Kilbinger,; S. J. Cantrill,; A. W. Waltman,; M. W. Day,; R. H. Grubbs, Magic ring rotaxanes by olefin metathesis. Angew. Chem., Int. Ed. 2003, 42, 3281-3285.
[26]
Z. Akimbekov,; A. D. Katsenis,; G. P. Nagabhushana,; G. Ayoub,; M. Arhangelskis,; A. J. Morris,; T. Friščić,; A. Navrotsky, Experimental and theoretical evaluation of the stability of true MOF polymorphs explains their mechanochemical interconversions. J. Am. Chem. Soc. 2017, 139, 7952-7957.
[27]
O. V. Dolomanov,; L. J. Bourhis,; R. J. Gildea,; J. A. K. Howard,; H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
[28]
A. L. Spek, PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C Struct. Chem. 2015, 71, 9-18.
[29]
S. Barthel,; E. V. Alexandrov,; D. M. Proserpio,; B. Smit, Distinguishing metal-organic frameworks. Cryst. Growth Des. 2018, 18, 1738-1747.
[30]
V. A. Blatov,; A. P. Shevchenko,; D. M. Proserpio, Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576-3586.
[31]
J. E. Mondloch,; W. Bury,; D. Fairen-Jimenez,; S. Kwon,; E. J. DeMarco,; M. H. Weston,; A. A. Sarjeant,; S. B. T. Nguyen,; P. C. Stair,; R. Q. Snurr, et al. Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J. Am. Chem. Soc. 2013, 135, 10294-10297.
[32]
L. J. Barbour, Crystal porosity and the burden of proof. Chem. Commun. 2006, 1163-1168.
[33]
J. V. Smith, Topochemistry of zeolites and related materials. 1. Topology and geometry. Chem. Rev. 1988, 88, 149-182.
[34]
J. P. Zhang,; Y. B. Zhang,; J. B. Lin,; X. M. Chen, Metal azolate frameworks: From crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001-1033.
[35]
B. Gole,; A. K. Bar,; A. Mallick,; R. Banerjee,; P. S. Mukherjee, An electron rich porous extended framework as a heterogeneous catalyst for Diels-Alder reactions. Chem. Commun. 2013, 49, 7439-7441.
[36]
J. F. Cai,; J. C. Yu,; H. L. Wang,; X. Duan,; Q. Zhang,; C. D. Wu,; Y. J. Cui,; Y. Yu,; Z. Y. Wang,; B. L. Chen, et al. A noninterpenetrated metal-organic framework built from an enlarged tetracarboxylic acid for small hydrocarbon separation. Cryst. Growth Des. 2015, 15, 4071-4074.
[37]
J. F. Cai,; J. C. Yu,; H. Xu,; Y. B. He,; X. Duan,; Y. J. Cui,; C. D. Wu,; B. L. Chen,; G. D. Qian, A doubly interpenetrated metal-organic framework with open metal sites and suitable pore sizes for highly selective separation of small hydrocarbons at room temperature. Cryst. Growth Des. 2013, 13, 2094-2097.
File
12274_2020_3123_MOESM1_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 August 2020
Revised: 12 September 2020
Accepted: 14 September 2020
Published: 19 October 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

S. J. L. acknowledges the Natural Sciences and Engineering Research Council of Canada for support of a Discovery Grant (101694) and a Canada Research Chair. R. W. S. is also grateful for support from NSERC, the Canadian Foundation for Innovation, the Ontario Innovation Trust, the University of Windsor for the development and maintenance of the SSNMR centre, and for funding from the Florida State University and the National High Magnetic Field Laboratory (NHMFL), which is funded by the National Science Foundation Cooperative Agreement (DMR-1644779) and by the State of Florida. The authors acknowledge M. Revington for technical assistance with solution NMR spectroscopy and J. Auld for technical assistance with high resolution mass spectrometry.

Return