Journal Home > Volume 14 , Issue 3

The thickness of two-dimensional (2D) nanomaterials shows a significant effect on their optical and electrical properties. Therefore, a rapid and automatic detection technology of 2D nanomaterials with desired layer-number is required to extend their practical application in optoelectronic devices. In this paper, an image recognition technology was proposed for rapid and reliable identification of thin-layer WS2 samples, which combining a layer-thickness identification criterion and a novel image segmentation algorithm. The criterion stemmed from optical contrast study of monochromatic illumination photographs, and the algorithm was based on Canny operator and edge connection iteration. This optical identification method can seek out thin-layer WS2 samples on complex surfaces, which provides a promising approach for automatic search of thin-layer nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rapid thin-layer WS2 detection based on monochromatic illumination photographs

Show Author's information Xiangmin HuCuicui QiuDameng Liu( )
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

Abstract

The thickness of two-dimensional (2D) nanomaterials shows a significant effect on their optical and electrical properties. Therefore, a rapid and automatic detection technology of 2D nanomaterials with desired layer-number is required to extend their practical application in optoelectronic devices. In this paper, an image recognition technology was proposed for rapid and reliable identification of thin-layer WS2 samples, which combining a layer-thickness identification criterion and a novel image segmentation algorithm. The criterion stemmed from optical contrast study of monochromatic illumination photographs, and the algorithm was based on Canny operator and edge connection iteration. This optical identification method can seek out thin-layer WS2 samples on complex surfaces, which provides a promising approach for automatic search of thin-layer nanomaterials.

Keywords: image recognition, WS2, thickness identification, sample detection

References(60)

[1]
Z. H. Sun,; H. X. Chang, Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133-4156.
[2]
C. L. Li,; Q. Cao,; F. Z. Wang,; Y. Q. Xiao,; Y. B. Li,; J. J. Delaunay,; H. W. Zhu, Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 2018, 47, 4981-5037.
[3]
X. T. Jiang,; A. V. Kuklin,; A. Baev,; Y. Q. Ge,; H. Ågren,; H. Zhang,; P. N. Prasad, Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1-58.
[4]
S. Y. Guo,; Y. P. Zhang,; Y. Q. Ge,; S. L. Zhang,; H. B. Zeng,; H. Zhang, 2D V-V binary materials: Status and challenges. Adv. Mater. 2019, 31, 1902352.
[5]
Y. P. Zhang,; C. K. Lim,; Z. G. Dai,; G. N. Yu,; J. W. Haus,; H. Zhang,; P. N. Prasad, Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 2019, 795, 1-51.
[6]
A. J. Cho,; J. Y. Kwon, Hexagonal boron nitride for surface passivation of two-dimensional van der waals heterojunction solar cells. ACS Appl. Mater. Interfaces 2019, 11, 39765-39771.
[7]
M. M. Furchi,; A. Pospischil,; F. Libisch,; J. Burgdörfer,; T. Mueller, Photovoltaic effect in an electrically tunable van der waals heterojunction. Nano Lett. 2014, 14, 4785-4791.
[8]
J. Di,; J. Xiong,; H. M. Li,; Z. Liu, Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Adv. Mater. 2018, 30, 1704548.
[9]
A. Gupta,; T. B. Rawal,; C. J. Neal,; S. Das,; T. S. Rahman,; S. Seal, Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling. 2D Mater. 2017, 4, 025077.
[10]
M. Donarelli,; L. Ottaviano, 2D materials for gas sensing applications: A review on graphene oxide, MoS₂, WS₂ and phosphorene. Sensors 2018, 18, 3638.
[11]
A. P. Dral,; J. E. ten Elshof, 2D metal oxide nanoflakes for sensing applications: Review and perspective. Sens. Actuat. B Chem. 2018, 272, 369-392.
[12]
F. G. Yan,; Z. M. Wei,; X. Wei,; Q. S. Lv,; W. K. Zhu,; K. Y. Wang, Toward high-performance photodetectors based on 2D materials: Strategy on methods. Small Methods 2018, 2, 1700349.
[13]
Y. Xie,; F. Liang,; D. Wang,; S. M. Chi,; H. H. Yu,; Z. S. Lin,; H. J. Zhang,; Y. X. Chen,; J. Y. Wang,; Y. C. Wu, Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 2018, 30, 1804858.
[14]
D. K. Sharma,; S. Kumar,; S. Auluck, Electronic structure, defect properties, and hydrogen storage capacity of 2H-WS2: A first-principles study. Int. J. Hyd. Energy 2018, 43, 23126-23134.
[15]
M. W. Iqbal,; M. Z. Iqbal,; M. F. Khan,; M. A. Shehzad,; Y. Seo,; J. H. Park,; C. Hwang,; J. Eom, High-mobility and air-stable single- layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 2015, 5, 10699.
[16]
X. B. Yan,; Q. L. Zhao,; A. P. Chen,; J. H. Zhao,; Z. Y. Zhou,; J. J. Wang,; H. Wang,; L. Zhang,; X. Y. Li,; Z. A. Xiao, et al. Vacancy- induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 2019, 15, 1901423.
[17]
G. Dastgeer,; M. F. Khan,; G. Nazir,; A. M. Afzal,; S. Aftab,; B. A. Naqvi,; J. Cha,; K. A. Min,; Y. Jami,; J. Jung, et al. Temperature- dependent and gate-tunable rectification in a black phosphorus/WS2 van der Waals heterojunction diode. ACS Appl. Mater. Interfaces 2018, 10, 13150-13157.
[18]
G. He,; J. Nathawat,; C. P. Kwan,; H. Ramamoorthy,; R. Somphonsane,; M. Zhao,; K. Ghosh,; U. Singisetti,; N. Perea-López,; C. Zhou, et al. Negative differential conductance & hot-carrier avalanching in monolayer WS2 FETs. Sci. Rep. 2017, 7, 11256.
[19]
H. L. Chen,; X. W. Wen,; J. Zhang,; T. M. Wu,; Y. J. Gong,; X. Zhang,; J. T. Yuan,; C. Y. Yi,; J. Lou,; P. M. Ajayan, et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.
[20]
Z. W. Jin,; D. He,; Q. Zhou,; P. Mao,; L. M. Ding,; J. Z. Wang, Bilayer heterostructured PThTPTI/WS2 photodetectors with high thermal stability in ambient environment. ACS Appl. Mater. Interfaces 2016, 8, 33043-33050.
[21]
S. Roy,; P. Bermel, Electronic and optical properties of ultra-thin 2D tungsten disulfide for photovoltaic applications. Solar Energy Mater. Solar Cells 2018, 174, 370-379.
[22]
T. Y. Lei,; W. Chen,; J. W. Huang,; C. Y. Yan,; H. X. Sun,; C. Wang,; W. L. Zhang,; Y. R. Li,; J. Xiong, Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1601843.
[23]
X. M. Li,; J. X. Deng,; L. L. Liu,; L. L. Zhang,; J. Sun,; D. L. Ge,; Y. Y. Liu,; R. Duan, Tribological properties of WS2 coatings deposited on textured surfaces by electrohydrodynamic atomization. Surf. Coat. Technol. 2018, 352, 128-143.
[24]
J. X. Zhou,; G. C. Zhao,; J. S. Li,; J. Chen,; S. Q. Zhang,; J. Wang,; F. C. Walsh,; S. C. Wang,; Y. P. Xue, Electroplating of non-fluorinated superhydrophobic Ni/WC/WS2 composite coatings with high abrasive resistance. Appl. Surf. Sci. 2019, 487, 1329-1340.
[25]
A. J. Mannix,; B. Kiraly,; M. C. Hersam,; N. P. Guisinger, Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.
[26]
X. L. Li,; W. P. Han,; J. B. Wu,; X. F. Qiao,; J. Zhang,; P. H. Tan, Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 2017, 27, 1604468.
[27]
L. Huang,; D. Zhang,; F. H. Zhang,; Z. H. Feng,; Y. D. Huang,; Y. Gan, High-contrast SEM imaging of supported few-layer graphene for differentiating distinct layers and resolving fine features: There is plenty of room at the bottom. Small 2018, 14, 1704190.
[28]
O. I. Lebedev,; N. A. Kiselev,; A. G. Vasiliev,; A. A. Orlikovsky, TEM investigation of GexSi1-x/Si(111) heterostructures grown by MBE. In Microscopy of Semiconducting Materials 1995. A. G. Cullis,; A. E. StatonBevan,, Eds., 1995; pp 297-300.
[29]
P. Sutter,; E. Sutter, Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy. APL Mater. 2014, 2, 092502.
[30]
N. S. Taghavi,; P. Gant,; P. Huang,; I. Niehues,; R. Schmidt,; S. Michaelis de Vasconcellos,; R. Bratschitsch,; M. García-Hernández,; R. Frisenda,; A. Castellanos-Gomez, Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials. Nano Res. 2019, 12, 1691-1695.
[31]
Y. Anzai,; M. Yamamoto,; S. Genchi,; K. Watanabe,; T. Taniguchi,; S. Ichikawa,; Y. Fujiwara,; H. Tanaka, Broad range thickness identification of hexagonal boron nitride by colors. Appl. Phys. Express 2019, 12, .
[32]
Z. H. Ni,; H. M. Wang,; J. Kasim,; H. M. Fan,; T. Yu,; Y. H. Wu,; Y. P. Feng,; Z. X. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758-2763.
[33]
W. J. Zhao,; Z. Ghorannevis,; K. K. Amara,; J. R. Pang,; M. Toh,; X. Zhang,; C. Kloc,; P. H. Tan,; G. Eda, Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677-9683.
[34]
X. Zhang,; X. F. Qiao,; W. Shi,; J. B. Wu,; D. S. Jiang,; P. H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757-2785.
[35]
W. J. Zhao,; Z. Ghorannevis,; L. Q. Chu,; M. Toh,; C. Kloc,; P. H. Tan,; G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791-797.
[36]
S. Zhang,; J. Yang,; R. J. Xu,; F. Wang,; W. F. Li,; M. Ghufran,; Y. W. Zhang,; Z. F. Yu,; G. Zhang,; Q. H. Qin, et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590-9596.
[37]
H. L. Zeng,; G. B. Liu,; J. F. Dai,; Y. J. Yan,; B. R. Zhu,; R. C. He,; L. Xie,; S. J. Xu,; X. H. Chen,; W. Yao, et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 2013, 3, 1608.
[38]
S. Masubuchi,; T. Machida, Classifying optical microscope images of exfoliated graphene flakes by data-driven machine learning. npj 2D Mater. Appl. 2019, 3, 4.
[39]
X. Y. Lin,; Z. Z. Si,; W. Z. Fu,; J. L. Yang,; S. D. Guo,; Y. Cao,; J. Zhang,; X. H. Wang,; P. Liu,; K. L. Jiang, et al. Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy. Nano Res. 2018, 11, 6316-6324.
[40]
C. M. Nolen,; G. Denina,; D. Teweldebrhan,; B. Bhanu,; A. A. Balandin, High-throughput large-area automated identification and quality control of graphene and few-layer graphene films. ACS Nano 2011, 5, 914-922.
[41]
S. Masubuchi,; M. Morimoto,; S. Morikawa,; M. Onodera,; Y. Asakawa,; K. Watanabe,; T. Taniguchi,; T. Machida, Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 2018, 9, 1413.
[42]
H. Terrones,; E. Del Corro,; S. Feng,; J. M. Poumirol,; D. Rhodes,; D. Smirnov,; N. R. Pradhan,; Z. Lin,; M. A. T. Nguyen,; A. L. Elías, et al. New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 2014, 4, 4215.
[43]
J. J. Pei,; J. Yang,; T. Yildirim,; H. Zhang,; Y. R. Lu, Many-body complexes in 2D semiconductors. Adv. Mater. 2019, 31, 1706945.
[44]
Y. Niu,; S. Gonzalez-Abad,; R. Frisenda,; P. Marauhn,; M. Druppel,; P. Gant,; R. Schmidt,; N. S. Taghavi,; D. Barcons,; A. J. Molina-Mendoza, et al. Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials 2018, 8, 725.
[45]
A. Castellanos-Gomez,; N. Agraït,; G. Rubio-Bollinger, Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.
[46]
C. H. Feng,; Y. Makino,; S. Oshita,; J. F. Garcia Martin, Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art research advances. Food Control 2018, 84, 165-176.
[47]
H. B. Pu,; L. Lin,; D. W. Sun, Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: A review. Compr. Rev. Food Sci. Food Safety 2019, 18, 853-866.
[48]
H. Aasen,; E. Honkavaara,; A. Lucieer,; P. J. Zarco-Tejada, Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sens. 2018, 10, 1091.
[49]
C. M. Zhang,; T. K. Mu,; T. Y. Yan,; Z. Y. Chen, Overview of hyperspectral remote sensing technology. Spacecraft Recov. Remote Sens. 2018, 39, 104-114.
[50]
Y. F. Zhong,; A. L. Ma,; Y. S. Ong,; Z. X. Zhu,; L. P. Zhang, Computational intelligence in optical remote sensing image processing. Appl. Soft Comput. 2018, 64, 75-93.
[51]
M. B. Stuart,; A. J. S. McGonigle,; J. R. Willmott, Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors 2019, 19, 3071.
[52]
G. L. Lu,; B. W. Fei, Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 10901.
[53]
J. Shapey,; Y. J. Xie,; E. Nabavi,; R. Bradford,; S. R. Saeed,; S. Ourselin,; T. Vercauteren, Intraoperative multispectral and hyperspectral label-free imaging: A systematic review of in vivo clinical studies. J. Biophoton. 2019, 12, e201800455.
[54]
S. Masubuchi,; E. Watanabe,; Y. Seo,; S. Okazaki,; T. Sasagawa,; K. Watanabe,; T. Taniguchi,; T. Machida, Deep-learning-based image segmentation integrated with optical microscopy for automatically searching for two-dimensional materials. npj 2D Mater. Appl. 2020, 4, 3.
[55]
L. I. Rudin,; S. Osher,; E. Fatemi, Nonlinear total variation based noise removal algorithms. Phys. D: Nonl. Phenom. 1992, 60, 259-268.
[56]
A. Chambolle, Total variation minimization and a class of binary MRF models. In Energy Minimization Methods in Computer Vision and Pattern Recognition. A. Rangarajan,; B. Vemuri,; A. L. Yuille,, Eds.; Berlin, Heidelberg: Springer, 2005; pp 136-152.
[57]
J. E. Solem, Programming Computer Vision with Python: Tools and Algorithms for Analyzing Images; O'Reilly Media, 2012.
[58]
F. H. Zawaideh,; Q. M. Yousef,; F. H. Zawaideh, Comparison between Butterworth and Gaussian high-pass filters using an enhanced method. Int. J. Comput. Sci. Netw. Secur. 2017, 17, 113-117.
[59]
H. G. Adelmann, Butterworth equations for homomorphic filtering of images. Comput. Biol. Med. 1998, 28, 169-181.
[60]
L. I. Voicu,; H. R. Myler,; A. R. Weeks, Practical considerations on color image enhancement using homomorphic filtering. J. Electronic Imag. 1997, 6, 108-113.
File
12274_2020_3122_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 August 2020
Revised: 09 September 2020
Accepted: 15 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (nos. 51527901, 11890672, and 51705285).

Return