Journal Home > Volume 14 , Issue 3

Exploring two-dimensional valleytronic crystals with large valley-polarized state is of considerable importance due to the promising applications in next-generation information related devices. Here, we show first-principles evidence that single-layer NbX2 (X = S, Se) is potentially the long-sought two-dimensional valleytronic crystal. Specifically, the valley-polarized state is found to occur spontaneously in single-layer NbX2, without needing any external tuning, which arises from their intrinsic magnetic exchange interaction and inversion asymmetry. Moreover, the strong spin-orbit coupling strength within Nb-d orbitals renders their valley- polarized states being of remarkably large (NbS2 ~ 156 meV/NbSe2 ~ 219 meV), enabling practical utilization of their valley physics accessible. In additional, it is predicted that the valley physics (i.e., anomalous valley Hall effect) in single-layer NbX2 is switchable via applying moderate strain. These findings make single-layer NbX2 tantalizing candidates for realizing high-performance and controllable valleytronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large valley-polarized state in single-layer NbX2 (X = S, Se): Theoretical prediction

Show Author's information Yanmei ZangYandong Ma( )Rui PengHao WangBaibiao HuangYing Dai( )
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China

Abstract

Exploring two-dimensional valleytronic crystals with large valley-polarized state is of considerable importance due to the promising applications in next-generation information related devices. Here, we show first-principles evidence that single-layer NbX2 (X = S, Se) is potentially the long-sought two-dimensional valleytronic crystal. Specifically, the valley-polarized state is found to occur spontaneously in single-layer NbX2, without needing any external tuning, which arises from their intrinsic magnetic exchange interaction and inversion asymmetry. Moreover, the strong spin-orbit coupling strength within Nb-d orbitals renders their valley- polarized states being of remarkably large (NbS2 ~ 156 meV/NbSe2 ~ 219 meV), enabling practical utilization of their valley physics accessible. In additional, it is predicted that the valley physics (i.e., anomalous valley Hall effect) in single-layer NbX2 is switchable via applying moderate strain. These findings make single-layer NbX2 tantalizing candidates for realizing high-performance and controllable valleytronic devices.

Keywords: first-principles, ferromagnetic, valley polarization, anomalous valley Hall effect, NbX2 (X = S, Se)

References(68)

[1]
D. Xiao,; W. Yao,; Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809.
[2]
W. Yao,; D. Xiao,; Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 2008, 77, 235406.
[3]
F. Zhang,; J. Jung,; G. A. Fiete,; Q. Niu,; A. H. MacDonald, Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 2011, 106, 156801.
[4]
Y. D. Ma,; L. Z. Kou,; A. J. Du,; B. B. Huang,; Y. Dai,; T. Heine, Conduction-band valley spin splitting in single-layer H-Tl2O. Phys. Rev. B 2018, 97, 035444.
[5]
D. Xiao,; G. B. Liu,; W. X. Feng,; X. D. Xu,; W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.
[6]
C. A. Lei,; Y. D. Ma,; T. Zhang,; X. L. Xu,; B. B. Huang,; Y. Dai, Valley polarization in monolayer CrX2 (X = S, Se) with magnetically doping and proximity coupling. New J. Phys. 2020, 22, 033002.
[7]
J. R. Schaibley,; H. Y. Yu,; G. Clark,; P. Rivera,; J. S. Ross,; K. L. Seyler,; W. Yao,; X. D. Xu, Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.
[8]
Q. Pei,; B. Z. Zhou,; W. B. Mi,; C. Y. Cheng, Triferroic material and electrical control of valley degree of freedom. ACS Appl. Mater. Interfaces 2019, 11, 12675-12682
[9]
H. L. Zeng,; J. F. Dai,; W. Yao,; D. Xiao,; X. D. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.
[10]
T. Cao,; G. Wang,; W. P. Han,; H. Q. Ye,; C. R. Zhu,; J. R. Shi,; Q. Niu,; P. H. Tan,; E. G. Wang,; B. L.; Liu, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.
[11]
P. Zhao,; Y. D. Ma,; C. A. Lei,; H. Wang,; B. B. Huang,; Y. Dai, Single-layer LaBr2: Two-dimensional valleytronic semiconductor with spontaneous spin and valley polarizations. Appl. Phys. Lett. 2019, 115, 261605.
[12]
K. F. Mak,; K. L. He,; J. Shan,; T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.
[13]
N. Singh,; U. Schwingenschlogl, A route to permanent valley polarization in monolayer MoS2. Adv. Mater. 2017, 29, 1600970.
[14]
X. L. Xu,; Y. D. Ma,; T. Zhang,; C. A. Lei,; B. B. Huang,; Y. Dai, Nonmetal-atom-doping-induced valley polarization in single-layer Tl2O. J. Phys. Chem. Lett. 2019, 10, 4535-4541.
[15]
Q. Y. Zhang,; S. A. Yang,; W. B. Mi,; Y. C. Cheng,; U. Schwingenschlögl, Large spin-valley polarization in monolayer MoTe2 on top of EuO(111). Adv. Mater. 2016, 28, 959-966.
[16]
N. B. Li,; J. Y. Zhang,; Y. Xue,; T. Zhou,; Z. Q. Yang, Large valley polarization in monolayer MoTe2 on a magnetic substrate. Phys. Chem. Chem. Phys. 2018, 20, 3805-3812.
[17]
J. S. Qi,; X. Li,; Q. Niu,; J. Feng, Giant and tunable valley degeneracy splitting in MoTe2. Phys. Rev. B 2015, 92, 121403.
[18]
X. F. Ma,; L. Yin,; J. J. Zou,; W. B. Mi,; X. C. Wang, Strain-tailored valley polarization and magnetic anisotropy in two-dimensional 2H-VS2/Cr2C heterostructures. J. Phys. Chem. C 2019, 123, 17440-17448.
[19]
R. Peng,; Y. D. Ma,; S. Zhang,; B. B. Huang,; Y. Dai, Valley polarization in Janus single-layer MoSSe via magnetic doping. J. Phys. Chem. Lett. 2018, 9, 3612-3617.
[20]
T. C. Berkelbach,; M. S. Hybertsen,; D. R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318.
[21]
H. Z. Lu,; W. Yao,; D. Xiao,; S. Q. Shen, Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions. Phys. Rev. Lett. 2013, 110, 016806.
[22]
O. L. Sanchez,; D. Ovchinnikov,; S. Misra,; A. Allain,; A. Kis, Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett. 2016, 16, 5792-5797.
[23]
C. M. Zhang,; Y. H. Nie,; S. Sanvito,; A. J. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 2019, 19, 1366-1370.
[24]
L. Z. Kou,; S. C. Wu,; C. Felser,; T. Frauenheim,; C. F. Chen,; B. H. Yan, Robust 2D topological insulators in van der Waals heterostructures. ACS Nano 2014, 8, 10448-10454.
[25]
L. Z. Kou,; B. H. Yan,; F. M. Hu,; S. C. Wu,; T. O. Wehling,; C. Felser,; C. F. Chen,; T. Frauenheim, Graphene-based topological insulator with an intrinsic bulk band gap above room temperature. Nano Lett. 2013, 13, 6251-6255.
[26]
L. Z. Kou,; F. M. Hu,; B. H. Yan,; T. Wehling,; C. Felser,; T. Frauenheim,; C. F. Chen, Proximity enhanced quantum spin Hall state in graphene. Carbon 2015, 87, 418-423.
[27]
D. MacNeill,; C. Heikes,; K. F. Mak,; Z. Anderson,; A. Kormányos,; V. Zólyomi,; J. Park,; D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.
[28]
Y. L. Li,; J. Ludwig,; T. Low,; A. Chernikov,; X. Cui,; G. Arefe,; Y. D. Kim,; A. M. Van Der Zande,; A. Rigosi,; H. M. Hill, et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 2014, 113, 266804.
[29]
Y. J. Wu,; C. Shen,; Q. H. Tan,; J. Shi,; X. F. Liu,; Z. H. Wu,; J. Zhang,; P. H. Tan,; H. Z. Zheng, Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature. Appl. Phys. Lett. 2018, 112, 153105.
[30]
B. Huang,; G. Clark,; E. Navarro-Moratalla,; D. R. Klein,; R. Cheng,; K. L. Seyler,; D. Zhong,; E. Schmidgall,; M. A. Mcguire,; D. H. Cobden, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270-273.
[31]
C. Gong,; L. Li,; Z. L. Li,; H. W. Ji,; A. Stern,; Y. Xia,; T. Cao,; W. Bao,; C. Z. Wang,; Y. Wang, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265-269.
[32]
C. X. Huang,; J. S. Feng,; F. Wu,; D. Ahmed,; B. Huang,; H. J. Xiang,; K. M. Deng,; E. Kan, Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Am. Chem. Soc. 2018, 140, 11519-11525.
[33]
N. H. Miao,; B. Xu,; L. G. Zhu,; J. Zhou,; Z. M. Sun, 2D intrinsic ferromagnets from van der Waals antiferromagnets. J. Am. Chem. Soc. 2018, 140, 2417-2420.
[34]
C. X. Huang,; Y. P. Du,; H. P. Wu,; H. J. Xiang,; K. M. Deng,; E. Kan, Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett. 2018, 120, 147601.
[35]
P. H. Jiang,; C. Wang,; D. C. Chen,; Z. C. Zhong,; Z. Yuan,; Z. Y. Lu,; W. Ji, Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 2019, 99, 144401.
[36]
W. Y. Tong,; S. J. Gong,; X. G. Wan,; C. G. Duan, Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun. 2016, 7, 13612.
[37]
P. Zhao,; Y. D. Ma,; H. Wang,; B. B. Huang,; L. Z. Kou,; Y. Dai, Intrinsic valley polarization and anomalous valley Hall effect in single-layer 2H-FeCl2. arXiv: 2003.04561, 2020.
[38]
R. Peng,; Y. D. Ma,; X. L. Xu,; Z. L. He,; B. B. Huang,; Y. Dai, Intrinsic anomalous valley Hall effect in single-layer Nb3I8. Phys. Rev. B 2020, 102, 035412.
[39]
W. W. Zhao,; B. H. Dong,; Z. L. Guo,; G. Su,; R. J. Gao,; W. Wang,; L. X. Cao, Colloidal synthesis of VSe2 single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction. Chem. Commun. 2016, 52, 9228-9231.
[40]
K. Krämer,; T. Schleid,; M. Schulze,; W. Urland,; G. Meyer, Three bromides of lanthanum: LaBr2, La2Br5, and LaBr3. Z. Anorg. Allg. Chem. 1989, 575, 61-70.
[41]
N. J. Doran,; D. J. Titterington,; B. Ricco,; G. Wexler, A tight binding fit to the bandstructure of 2H-NbSe2 and NbS2. J. Phys. C: Solid State Phys. 1978, 11, 685.
[42]
H. Wang,; X. W. Huang,; J. H. Lin,; J. Cui,; Y. Chen,; C. Zhu,; F. C. Liu,; Q. S. Zeng,; J. D. Zhou,; P. Yu, et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 2017, 8, 394.
[43]
X. J. Zhu,; Y. Q. Guo,; H. Cheng,; J. Dai,; X. D. An,; J. Y. Zhao,; K. Z. Tian,; S. Q. Wei,; X. C. Zeng,; C. Z. Wu, et al. Signature of coexistence of superconductivity and ferromagnetism in two- dimensional NbSe2 triggered by surface molecular adsorption. Nat. Commun. 2016, 7, 11210.
[44]
C. S. Lian,; C. Si,; W. H. Duan, Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2 Nano Lett. 2018, 18, 2924-2929.
[45]
R. Yan,; G. Khalsa,; B. T. Schaefer,; A. Jarjour,; S. Rouvimov,; K. C. Nowack,; H. G. Xing,; D. Jena, Thickness dependence of superconductivity in ultrathin NbS2 Appl. Phys. Express 2019, 12, 023008.
[46]
S. H. Zhao,; T. Hotta,; T. Koretsune,; K. Watanabe,; T. Taniguchi,; K. Sugawara, T. Takahashi,; H. Shinohara,; R. Kitaura, Two-dimensional metallic NbS2: Growth, optical identification and transport properties. 2D Mater. 2016, 3, 025027.
[47]
Y. D. Ma,; A. Kuc,; Y. Jing,; P. Philipsen,; T. Heine, Two-dimensional haeckelite NbS2: A diamagnetic high-mobility semiconductor with Nb4+ ions. Angew. Chem., Int. Ed. 2017, 56, 10214-10218.
[48]
Y. Xu,; X. F. Liu,; W. L. Guo, Tensile strain induced switching of magnetic states in NbSe2 and NbS2 single layers. Nanoscale 2014, 6, 12929-12933.
[49]
Y. J. Sun,; Z. W. Zhuo,; X. J. Wu, Bipolar magnetism in a two-dimensional NbS2 semiconductor with high curie temperature. J. Mater. Chem. C 2018, 6, 11401-11406.
[50]
Y. G. Zhou,; Z. G. Wang,; P. Yang,; X. T. Zu,; L. Yang,; X. Sun,; F. Gao, Tensile strain switched ferromagnetism in layered NbS2 and NbSe2 ACS Nano 2012, 6, 9727-9736.
[51]
Y. Wang,; M. Qiao,; Y. F. Li,; Z. F. Chen, A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon. Nanoscale Horiz. 2018, 3, 327-334.
[52]
R. Peng,; Y. D. Ma,; B. B. Huang,; Y. Dai, Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A 2019, 7, 603-610.
[53]
Y. Ding,; Y. L. Wang, Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties. J. Phys. Chem. C 2013, 117, 18266-18278.
[54]
E. Cadelano,; P. L. Palla,; S. Giordano,; L. Colombo, Elastic properties of hydrogenated graphene. Phys. Rev. B 2010, 82, 235414.
[55]
R. Peng,; Y. D. Ma,; Z. L. He,; B. B. Huang,; L. Z. Kou,; Y. Dai, Single-layer Ag2S: A two-dimensional bidirectional auxetic semiconductor. Nano Lett. 2019, 19, 1227-1233.
[56]
R. C. Andrew,; R. E. Mapasha,; A. M. Ukpong,; N. Chetty, Mechanical properties of graphene and boronitrene. Phys. Rev. B 2012, 85, 125428.
[57]
K. H. Michel,; B. Verberck, Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride. Phys. Rev. B 2009, 80, 224301.
[58]
Z. B. Gao,; X. Dong,; N. B. Li,; J. Ren, Novel two-dimensional silicon dioxide with in-plane negative Poisson’s ratio. Nano Lett. 2017, 17, 772-777.
[59]
C. Gong,; H. J. Zhang,; W. H. Wang,; L. Colombo,; R. M. Wallace,; K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 2013, 103, 053513.
[60]
D. J. Thouless,; M. Kohmoto,; M. P. Nightingale,; M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 1982, 49, 405-408.
[61]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[62]
G. Kresse,; J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[63]
H. J Monkhorst,; J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[64]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
[65]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[66]
J. Heyd,; G. E. Scuseria,; M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.
[67]
A. Togo,; F. Oba,; I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.
[68]
A. A. Mostofi,; J. R. Yates,; Y. S. Lee,; I. Souza,; D. Vanderbilt,; N. Marzari, wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685-699.
File
12274_2020_3121_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 July 2020
Revised: 24 August 2020
Accepted: 15 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11804190), Shandong Provincial Natural Science Foundation of China (Nos. ZR2019QA011 and ZR2019MEM013), Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project) (No. 2019JZZY010302), Shandong Provincial Key Research and Development Program (No. 2019RKE27004), Qilu Young Scholar Program of Shandong University, and Taishan Scholar Program of Shandong Province.

Return