Journal Home > Volume 14 , Issue 3

We developed a procedure to prepare luminescent LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with a size of approximately 40 nm revealing luminescence decay times of the dopant ions that approach those of high-quality laser crystals of LiYF4:Yb (Yb:YLF) and LiYF4:Yb,Er (Yb,Er:YLF) with identical doping concentrations. As the luminescence decay times of Yb3+ and Er3+ are known to be very sensitive to the presence of quenchers, the long decay times of the core/shell nanocrystals indicate a very low number of defects in the core particles and at the core/shell interfaces. This improvement in the performance was achieved by introducing two important modifications in the commonly used oleic acid based synthesis. First, the shell was prepared via a newly developed method characterized by a very low nucleation rate for particles of pure LiYF4 shell material. Second, anhydrous acetates were used as precursors and additional drying steps were applied to reduce the incorporation of OH in the crystal lattice, known to quench the emission of Yb3+ ions. Excitation power density (P)-dependent absolute measurements of the upconversion luminescence quantum yield (ΦUC) of LiYF4:Yb,Er/LiYF4 core/shell particles reveal a maximum value of 1.25% at P of 180 W·cm−2. Although lower than the values reported for NaYF4:18%Yb,2%Er core/shell nanocrystals with comparable sizes, these ΦUC values are the highest reported so far for LiYF4:18%Yb,2%Er/LiYF4 nanocrystals without additional dopants. Further improvements may nevertheless be possible by optimizing the dopant concentrations in the LiYF4 nanocrystals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals

Show Author's information Frederike Carl1Leonie Birk1Bettina Grauel2Monica Pons2Christian Würth2Ute Resch-Genger2( )Markus Haase1( )
Institute of Chemistry of New Materials, Department Biology/Chemistry, University Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany
Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany

Abstract

We developed a procedure to prepare luminescent LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with a size of approximately 40 nm revealing luminescence decay times of the dopant ions that approach those of high-quality laser crystals of LiYF4:Yb (Yb:YLF) and LiYF4:Yb,Er (Yb,Er:YLF) with identical doping concentrations. As the luminescence decay times of Yb3+ and Er3+ are known to be very sensitive to the presence of quenchers, the long decay times of the core/shell nanocrystals indicate a very low number of defects in the core particles and at the core/shell interfaces. This improvement in the performance was achieved by introducing two important modifications in the commonly used oleic acid based synthesis. First, the shell was prepared via a newly developed method characterized by a very low nucleation rate for particles of pure LiYF4 shell material. Second, anhydrous acetates were used as precursors and additional drying steps were applied to reduce the incorporation of OH in the crystal lattice, known to quench the emission of Yb3+ ions. Excitation power density (P)-dependent absolute measurements of the upconversion luminescence quantum yield (ΦUC) of LiYF4:Yb,Er/LiYF4 core/shell particles reveal a maximum value of 1.25% at P of 180 W·cm−2. Although lower than the values reported for NaYF4:18%Yb,2%Er core/shell nanocrystals with comparable sizes, these ΦUC values are the highest reported so far for LiYF4:18%Yb,2%Er/LiYF4 nanocrystals without additional dopants. Further improvements may nevertheless be possible by optimizing the dopant concentrations in the LiYF4 nanocrystals.

Keywords: nanocrystal, upconversion, luminescence, quantum yield, decay time, LiYF4

References(104)

[1]
C. Renero-Lecuna,; R. Martín-Rodríguez,; R. Valiente,; J. González,; F. Rodríguez,; K. W. Krämer,; H. U. Güdel, Origin of the high upconversion green luminescence efficiency in β-NaYF4:2%Er3+, 20%Yb3+. Chem. Mater. 2011, 23, 3442-3448.
[2]
M. M. Lage,; R. L. Moreira,; F. M. Matinaga,; J. Y. Gesland, Raman and infrared reflectivity determination of phonon modes and crystal structure of czochralski-grown NaLnF4 (Ln = La, Ce, Pr, Sm, Eu, and Gd) single crystals. Chem. Mater. 2005, 17, 4523-4529.
[3]
S. A. Miller,; H. E. Rast,; H. H. Caspers, Lattice vibrations of LiYF4. J. Chem. Phys. 1970, 52, 4172-4175.
[4]
S. Salaün,; M. T. Fornoni,; A. Bulou,; M. Rousseau,; P. Simon, and J. Y. Gesland, Lattice dynamics of fluoride scheelites: I. Raman and infrared study of LiYF4 and LiLnF4 (Ln = Ho, Er, Tm and Yb). J. Phys.: Condens. Matter 1997, 9, 6941-6956.
[5]
E. Schultheiss,; A. Scharmann,; D. Schwabe, Lattice vibrations in BiLiF4 and YLiF4. Phys. Stat. Sol. (B) 1986, 138, 465-475.
[6]
E. Sarantopoulou,; Y. S. Raptis,; E. Zouboulis,; C. Raptis, Pressure and temperature-dependent Raman study of YLiF4. Phys. Rev. B 1999, 59, 4154-4162.
[7]
X. X. Zhang,; A. Schulte,; B. H. T. Chai, Raman spectroscopic evidence for isomorphous structure of GdLiF4 and YLiF4 laser crystals. Solid State Commun. 1994, 89, 181-184.
[8]
S. Salaün,; A. Bulou,; M. Rousseau,; B. Hennion,; J. Y. Gesland, Lattice dynamics of fluoride scheelites: II. Inelastic neutron scattering in LiYF4 and modelization. J. Phys.: Condens. Matter 1997, 9, 6957-6968.
[9]
B. Minisini,; Q. A. Wang,; F. Tsobnang, Ab initio investigation of the lattice dynamics of fluoride scheelite LiYF4. J. Phys.: Condens. Matter 2005, 17, 4953-4962.
[10]
A. A. Kaminskii, Laser Crystals; Springer: Berlin, 1990.
[11]
R. E. Thoma,; G. M. Hebert,; H. Insley,; C. F. Weaver, Phase equilibria in the system sodium fluoride-yttrium fluoride. Inorg. Chem. 1963, 2, 1005-1012.
[12]
R. E. Thoma,; H. Insley,; G. M. Hebert, The sodium fluoride-lanthanide trifluoride systems. Inorg. Chem. 1966, 5, 1222-1229.
[13]
P. W. Metz,; F. Reichert,; F. Moglia,; S. Müller,; D. T. Marzahl,; C. Kränkel,; G. Huber, High-power red, orange, and green Pr³⁺:LiYF₄ lasers. Opt. Lett. 2014, 39, 3193-3196.
[14]
T. Sandrock,; T. Danger,; E. Heumann,; G. Huber,; B. H. T. Chai, Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature. Appl. Phys. B 1994, 58, 149-151.
[15]
B. Qu,; B. Xu,; Y. Cheng,; S. Luo,; H. Xu,; Y. Bu,; P. Camy,; J. L. Doualan,; R. Moncorge,; Z. Cai, InGaN-LD-pumped Pr3+:LiYF4 continuous-wave laser at 915 nm. IEEE Photonics J. 2014, 6, 1-11.
[16]
Z. P. Cai,; B. Qu,; Y. J. Cheng,; S. Y. Luo,; B. Xu,; H. Y. Xu,; Z. Q. Luo,; P. Camy,; J. L. Doualan,; R. Moncorgé, Emission properties and CW laser operation of Pr:YLF in the 910 nm spectral range. Optics Express 2014, 22, 31722-31728.
[17]
B. Qu,; R. Moncorgé,; Z. P. Cai,; J. L. Doualan,; B. Xu,; H. Y. Xu,; A. Braud,; P. Camy, Broadband-tunable CW laser operation of Pr3+:LiYF4 around 900 nm. Opt. Lett. 2015, 40, 3053-3056.
[18]
S. Y. Luo,; Z. P. Cai,; H. Y. Xu,; X. F. Liu,; H. Chen,; Y. Cao,; L. Li, Diode-pumped 915-nm Pr:YLF laser passively mode-locked with a SESAM. Opt. Express 2018, 26, 24695-24701.
[19]
S. Y. Luo,; B. Xu,; H. Y. Xu,; Z. P. Cai, High-power self-mode- locked Pr:YLF visible lasers. Appl. Opt. 2017, 56, 9552-9555.
[20]
H. Tanaka,; S. Fujita,; F. Kannari, High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes. Appl. Opt. 2018, 57, 5923-5928.
[21]
Y. J. Huang,; Y. S. Tzeng,; C. Y. Tang,; Y. P. Huang,; Y. F. Chen, Tunable GHz pulse repetition rate operation in high-power TEM00- mode Nd:YLF lasers at 1,047 nm and 1,053 nm with self mode locking. Opt. Express 2012, 20, 18230-18237.
[22]
P. J. Hardman,; W. A. Clarkson,; G. J. Friel,; M. Pollnau,; D. C. Hanna, Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals. IEEE J. Quant. Electron. 1999, 35, 647-655.
[23]
H. C. Liang,; C. S. Wu, Diode-pumped orthogonally polarized self-mode-locked Nd:YLF lasers subject to gain competition and thermal lensing effect. Opt. Express 2017, 25, 13697-13704.
[24]
K. J. Weingarten,; D. C. Shannon,; R. W. Wallace,; U. Keller, Two- gigahertz repetition-rate, diode-pumped, mode-locked Nd:YLF laser. Opt. Lett. 1990, 15, 962-964.
[25]
G. P. A. Malcolm,; P. F. Curley,; A. I. Ferguson, Additive-pulse mode locking of a diode-pumped Nd:YLF laser. Opt. Lett. 1990, 15, 1303-1305.
[26]
T. Juhasz,; S. T. Lai,; M. A. Pessot, Efficient short-pulse generation from a diode-pumped Nd:YLF laser with a piezoelectrically induced diffraction modulator. Opt. Lett. 1990, 15, 1458-1460.
[27]
K. J. Weingarten,; U. Keller,; T. H. Chiu,; J. F. Ferguson, Passively mode-locked diode-pumped solid-state lasers that use an antiresonant Fabry-Perot saturable absorber. Opt. Lett. 1993, 18, 640-642.
[28]
M. B. Danailov,; G. Cerullo,; V. Magni,; D. Segala,; S. De Silvestri, Nonlinear mirror mode locking of a cw Nd:YLF laser. Opt. Lett. 1994, 19, 792-794.
[29]
Y. J. Huang,; C. Y. Tang,; W. L. Lee,; Y. P. Huang,; S. C. Huang,; Y. F. Chen, Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1,053 nm: Selection of polarization with birefringence. Appl. Phys. B 2012, 108, 313-317.
[30]
J. Kawanaka,; K. Yamakawa,; H. Nishioka,; K. I. Ueda, Improved high-field laser characteristics of a diode-pumped Yb:LiYF4 crystal at low temperature. Opt. Express 2002, 10, 455-460.
[31]
L. E. Zapata,; D. J. Ripin,; T. Y. Fan, Power scaling of cryogenic Yb:LiYF4 lasers. Opt. Lett. 2010, 35, 1854-1856.
[32]
D. E. Miller,; J. R. Ochoa,; T. Y. Fan, Cryogenically cooled, 149 W, Q-switched, Yb:LiYF4 laser. Opt. Lett. 2013, 38, 4260-4261.
[33]
J. Kawanaka,; H. Nishioka,; N. Inoue,; K. I. Ueda, Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system. Appl. Opt. 2001, 40, 3542-3546.
[34]
T. Y. Fan,; D. J. Ripin,; R. L. Aggarwal,; J. R. Ochoa,; B. Chann,; M. Tilleman,; J. Spitzberg, Cryogenic Yb3+-doped solid-state lasers. IEEE J. Select. Top. Quant. Electron. 2007, 13, 448-459.
[35]
N. Ter-Gabrielan,; V. Fromzel,; T. Sanamyan,; M. Dubinskii, Highly-efficient Q-switched Yb:YLF laser at 995 nm with a second harmonic conversion. Opt. Mater. Express 2017, 7, 2396-2403.
[36]
G. J. Kintz,; R. Allen,; L. Esterowitz, cw and pulsed 2.8 μm laser emission from diode-pumped Er3+:LiYF4 at room temperature. Appl. Phys. Lett. 1987, 50, 1553-1555.
[37]
G. J. Kintz,; L. Esterowitz,; G. Rosenblatt,; R. Stoneman, Diode pumped cw 2.8 Pm Er-LiYF4 laser with high slope efficiency. In Proceedings of Conference Proceedings LEOS Lasers and Electro- Optics Society, Santa Clara, USA, 1988, pp 327-329.
[38]
F. Auzel,; S. Hubert,; D. Meichenin, Multifrequency room-temperature continuous diode and Ar* laser-pumped Er3+ laser emission between 2.66 and 2.85 μm. Appl. Phys. Lett. 1989, 54, 681-683.
[39]
M. Messner,; A. Heinrich,; K. Unterrainer, High-energy diode side- pumped Er:LiYF4 laser. Appl. Opt. 2018, 57, 1497-1503.
[40]
N. U. Wetter,; A. M. Deana,; I. M. Ranieri,; L. Gomes,; S. L. Baldochi, Influence of excited-state-energy upconversion on pulse shape in quasi-continuous-wave diode-pumped Er:LiYF4 Lasers. IEEE J. Quant. Electron. 2010, 46, 99-104.
[41]
A. Dergachev,; P. F. Moulton, Tunable CW Er:YLF diode-pumped laser. In Proceedings of Advanced Solid-State Photonics, San Antonio, Texas United States, 2003, paper 3.
[42]
T. Jensen,; A. Diening,; G. Huber,; B. H. T. Chai, Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels. Opt. Lett. 1996, 21, 585-587.
[43]
J. Q. Hong,; L. H. Zhang,; M. Xu,; Y. Hang, Effect of erbium concentration on optical properties of Er:YLF laser crystals. Infrared Phys. Technol. 2017, 80, 38-43.
[44]
R. L. Aggarwal,; D. J. Ripin,; J. R. Ochoa,; T. Y. Fan, Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range. J. Appl. Phys. 2005, 98, 103514.
[45]
H. Fonnum,; E. Lippert,; M. W. Haakestad, 550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm:fiber laser. Opt. Lett. 2013, 38, 1884-1886.
[46]
M. Schellhorn, A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers in CW and Q-switched operation under identical pump conditions. Appl. Phys. B 2011, 103, 777-788.
[47]
W. Koen,; C. Bollig,; H. Strauss,; M. Schellhorn,; C. Jacobs,; M. J. D. Esser, Compact fibre-laser-pumped Ho:YLF oscillator-amplifier system. Appl. Phys. B 2010, 99, 101-106.
[48]
J. Kwiatkowski,; J. K. Jabczynski,; W. Zendzian, An efficient continuous-wave and Q-switched single-pass two-stage Ho:YLF MOPA system. Opt. Laser Technol. 2015, 67, 93-97.
[49]
J. Kwiatkowski, Highly efficient high power CW and Q-switched Ho:YLF laser. Opto-Electron. Rev. 2015, 23, 165-171.
[50]
N. Coluccelli,; A. Lagatsky,; A. Di Lieto,; M. Tonelli,; G. Galzerano,; W. Sibbett,; P. Laporta, Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm. Opt. Lett. 2011, 36, 3209-3211.
[51]
Y. Ding,; D. X. Zhang,; W. Wang,; B. Q. Yao,; X. M. Duan,; Y. L. Ju,; Y. Z. Wang, High power Tm:YLF laser operating at 1.94 μm. Optik 2015, 126, 855-857.
[52]
B. Zhang,; L. Li,; C. J. He,; F. J. Tian,; X. T. Yang,; J. H. Cui,; J. Z. Zhang,; W. M. Sun, Compact self-Q-switched Tm:YLF laser at 1.91 μm. Opt. Laser Technol. 2018, 100, 103-108.
[53]
Ł. Gorajek,; J. K. Jabczyński,; W. Żendzian,; J. Kwiatkowski,; H. Jelinkova,; J. Sulc,; M. Nemec, High repetition rate, tunable, Q-switched diode pumped Tm:YLF laser. Opto-Electron. Rev. 2009, 17, 309-317.
[54]
L. A. Pomeranz,; P. A. Budni,; M. L. Lemons,; C. A. Miller,; J. R. Mosto,; T. M. Pollak, and E. P. Chicklis, OSA Trends in Optics and Photonics: Advanced Solid-State Lasers; Washington DC: Optical Society of America, 1999.
[55]
A. Dergachev,; K. Wall,; P. F. Moulton, A CW side-pumped Tm: YLF laser. In Proceedings of Advanced solid-state lasers, Québec City Canada, 2002.
[56]
S. So,; J. I. Mackenzie,; D. P. Shepherd,; W. A. Clarkson,; J. G. Betterton,; E. K. Gorton, A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers. Appl. Phys. B 2006, 84, 389-393.
[57]
I. M. Ranieri,; S. L. Baldochi,; A. M. E. Santo,; L. Gomes,; L. C. Courrol,; L. V. G. Tarelho,; W. De Rossi,; J. R. Berretta,; F. E. Costa,; G. E. C. Nogueira, et al. Growth of LiYF4 crystals doped with holmium, erbium and thulium. J. Cryst. Growth 1996, 166, 423-428.
[58]
I. M. Ranieri,; L. C. Courrol,; A. F. Carvalho,; L. Gomes,; S. L. Baldochi, Growth of YLF:Yb:Tm:Nd for optical applications. J. Mater. Sci. 2007, 42, 2309-2313.
[59]
C. Wyss,; W. Lüthy,; H. P. Weber,; P. Rogin,; J. Hulliger, Energy transfer in Yb3+:Er3+:YLF. Opt. Commun. 1997, 144, 31-35.
[60]
E. Heumann,; P. Möbert,; G. Huber,; B. H. T. Chai, Room- temperature upconversion-pumped cw Yb, Er:YLiF4 laser at 1.234 μm. In Proceedings of Advanced Solid State Lasers, San Francisco, California United States, 1996.
[61]
F. Heine,; V. Ostroumov,; E. Heumann,; T. Jensen,; G. Huber,; B. H. T. Chai, CW Yb, Tm:LiYF4 Upconversion Laser at 650 nm, 800 nm, and 1,500 nm. In Proceedings of Advanced Solid State Lasers, Memphis, Tennessee United States, 1995, pp 77-79.
[62]
J. Wang,; F. Wang,; J. Xu,; Y. Wang,; Y. S. Liu,; X. Y. Chen,; H. Y. Chen,; X. G. Liu, Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning. C. R. Chimie 2010, 13, 731-736.
[63]
V. Mahalingam,; F. Vetrone,; R. Naccache,; A. Speghini,; J. A. Capobianco, Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 2009, 21, 4025-4028.
[64]
G. Y. Chen,; T. Y. Ohulchanskyy,; A. Kachynski,; H. Ågren,; P. N. Prasad, Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1,490 nm. ACS Nano 2011, 5, 4981-4986.
[65]
A. R. Hong,; S. Y. Kim,; S. H. Cho,; K. Lee,; H. S. Jang, Facile synthesis of multicolor tunable ultrasmall LiYF4:Yb,Tm,Er/LiGdF4 core/shell upconversion nanophosphors with sub-10 nm size. Dyes Pigm. 2017, 139, 831-838.
[66]
M. S. Meijer,; P. A. Rojas-Gutierrez,; D. Busko,; I. A. Howard,; F. Frenzel,; C. Würth,; U. Resch-Genger,; B. S. Richards,; A. Turshatov,; J. A. Capobianco, et al. Absolute upconversion quantum yields of blue-emitting LiYF4:Yb3+,Tm3+ upconverting nanoparticles. Phys. Chem. Chem. Phys. 2018, 20, 22556-22562.
[67]
B. Meesaragandla,; D. Sarkar,; V. N. K. B. Adusumalli,; V. Mahalingam, Double bond terminated Ln3+-doped LiYF4 nanocrystals with strong single band NIR emission: Simple click chemistry route to make water dispersible nanocrystals with various functional groups. New J. Chem. 2016, 40, 3080-3085.
[68]
H. Na,; J. S. Jeong,; H. J. Chang,; H. Y. Kim,; K. Woo,; K. Lim,; K. A. Mkhoyan,; H. S. Jang, Facile synthesis of intense green light emitting LiGdF4:Yb,Er-based upconversion bipyramidal nanocrystals and their polymer composites. Nanoscale 2014, 6, 7461-7468.
[69]
J. Shin,; J. H. Kyhm,; A. R. Hong,; J. D. Song,; K. Lee,; H. Ko,; H. S. Jang, Multicolor tunable upconversion luminescence from sensitized seed-mediated grown LiGdF4:Yb,Tm-based core/triple-shell nanophosphors for transparent displays. Chem. Mater. 2018, 30, 8457-8464.
[70]
B. J. Park,; A. R. Hong,; S. Park,; K. U. Kyung,; K. Lee,; H. Seong Jang, Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides. Sci. Rep. 2017, 7, 45659.
[71]
Q. Zhang,; B. Yan, Hydrothermal synthesis and characterization of LiREF4 (RE = Y, Tb-Lu) nanocrystals and their core-shell nanostructures. Inorg. Chem. 2010, 49, 6834-6839.
[72]
X. J. Xue,; S. Uechi,; R. N. Tiwari,; Z. C. Duan,; M. S. Liao,; M. Yoshimura,; T. Suzuki,; Y. Ohishi, Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed. Opt. Mater. Express 2013, 3, 989-999.
[73]
J. Dong,; J. Zhang,; Q. Y. Han,; X. Zhao,; X. W. Yan,; J. H. Liu,; H. B. Ge,; W. Gao, Tuning and enhancing the red upconversion emission of Er3+ in LiYF4 nanoparticles. J. Lumin. 2019, 207, 361-368.
[74]
S. Y. Kim,; J. S. Jeong,; K. A. Mkhoyan,; H. S. Jang, Direct observation of the core/double-shell architecture of intense dual-mode luminescent tetragonal bipyramidal nanophosphors. Nanoscale 2016, 8, 10049-10058.
[75]
S. S. Liu,; X. Y. Guo,; X. S. Zhai,; D. Zhao,; K. Z. Zheng,; G. S. Qin,; W. P. Qin, Oleic acid-modified LiYF4:Er,Yb nanocrystals for potential optical-amplification applications. J. Nanosci. Nanotechnol. 2014, 14, 3718-3721.
[76]
S. Y. Kim,; Y. H. Won,; H. S. Jang, A strategy to enhance Eu3+ emission from LiYF4:Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites. Sci. Rep. 2015, 5, 7866.
[77]
J. Liu,; H. Rijckaert,; M. Zeng,; K. Haustraete,; B. Laforce,; L. Vincze,; I. Van Driessche,; A. M. Kaczmarek,; R. Van Deun, Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting. Adv. Funct. Mater. 2018, 28, 1707365.
[78]
Y. R. Zhu,; S. W. Zhao,; B. Zhou,; H. Zhu,; Y. F. Wang, Enhancing upconversion luminescence of LiYF4:Yb,Er nanocrystals by Cd2+ doping and core-shell structure. J. Phys. Chem. C 2017, 121, 18909-18916.
[79]
T. Cheng,; R. F. Ortiz,; K. Vedantham,; R. Naccache,; F. Vetrone,; R. S. Marks,; T. W. J. Steele, Tunable chemical release from polyester thin film by photocatalytic zinc oxide and doped LiYF4 upconverting nanoparticles. Biomacromolecules 2015, 16, 364-373.
[80]
G. Jalani,; R. Naccache,; D. H. Rosenzweig,; S. Lerouge,; L. Haglund,; F. Vetrone,; M. Cerruti, Real-time, non-invasive monitoring of hydrogel degradation using LiYF4:Yb3+/Tm3+ NIR-to-NIR upconverting nanoparticles. Nanoscale 2015, 7, 11255-11262.
[81]
T. Cheng,; R. Marin,; A. Skripka,; F. Vetrone, Small and bright lithium-based upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 12890-12899.
[82]
P. A. Rojas-Gutierrez,; C. DeWolf,; J. A. Capobianco, Formation of a supported lipid bilayer on faceted LiYF4:Tm3+/Yb3+ upconversion nanoparticles. Part. Part. Syst. Charact. 2016, 33, 865-870.
[83]
Q. Yu,; E. M. Rodriguez,; R. Naccache,; P. Forgione,; G. Lamoureux,; F. Sanz-Rodriguez,; D. Scheglmann,; J. A. Capobianco, Chemical modification of temoporfin-a second generation photosensitizer activated using upconverting nanoparticles for singlet oxygen generation. Chem. Commun. 2014, 50, 12150-12153.
[84]
V. Mahalingam,; R. Naccache,; F. Vetrone,; J. A. Capobianco, Sensitized Ce3+ and Gd3+ ultraviolet emissions by Tm3+ in colloidal LiYF4 nanocrystals. Chem.—Eur. J. 2009, 15, 9660-9663.
[85]
V. Mahalingam,; R. Naccache,; F. Vetrone,; J. A. Capobianco, Preferential suppression of high-energy upconverted emissions of Tm3+ by Dy3+ ions in Tm3+/Dy3+/Yb3+-doped LiYF4 colloidal nanocrystals. Chem. Commun. 2011, 47, 3481-3483.
[86]
H. W. Chien,; C. H. Wu,; C. H. Yang,; T. L. Wang, Multiple doping effect of LiYF4:Yb3+/Er3+/Ho3+/Tm3+@LiYF4:Yb3+ core/shell nanoparticles and its application in Hg2+ sensing detection. J. Alloys Compd. 2019, 806, 272-282.
[87]
Y. C. Chung,; C. H. Yang,; R. H. Lee,; T. L. Wang, Dual stimuli- responsive block copolymers for controlled release triggered by upconversion luminescence or temperature variation. ACS Omega 2019, 4, 3322-3328.
[88]
R. Marin,; L. Labrador-Paéz,; A. Skripka,; P. Haro-González,; A. Benayas,; P. Canton,; D. Jaque,; F. Vetrone, Upconverting nanoparticle to quantum dot förster resonance energy transfer: Increasing the efficiency through donor design. ACS Photonics 2018, 5, 2261-2270.
[89]
N. Möller,; T. Hellwig,; L. Stricker,; S. Engel,; C. Fallnich,; B. J. Ravoo, Near-infrared photoswitching of cyclodextrin-guest complexes using lanthanide-doped LiYF4 upconversion nanoparticles. Chem. Commun. 2017, 53, 240-243.
[90]
C. Homann,; L. Krukewitt,; F. Frenzel,; B. Grauel,; C. Würth,; U. Resch- Genger,; M. Haase, NaYF4:Yb, Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew. Chem., Int. Ed. 2018, 57, 8765-8769.
[91]
S. Mondini,; A. M. Ferretti,; A. Puglisi,; A. Ponti, Pebbles and PebbleJuggler: Software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs. Nanoscale 2012, 4, 5356-5372.
[92]
J. Rodriguez-Carvajal, Introduction to the Program FullProf; Laboratoire Léon Brillouin, France, 2003.
[93]
X. P. Cui,; Z. J. Feng,; Y. Jin,; Y. M. Cao,; D. M. Deng,; H. Chu,; S. X. Cao,; C. Dong,; J. C. Zhang, AutoFP: A GUI for highly automated Rietveld refinement using an expert system algorithm based on FullProf. J. Appl. Crystallogr. 2015, 48, 1581-1586.
[94]
M. Kaiser,; C. Würth,; M. Kraft,; I. Hyppänen,; T. Soukka,; U. Resch- Genger, Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles-measurements and simulations. Nanoscale 2017, 9, 10051-10058.
[95]
T. Rinkel,; A. N. Raj,; S. Dühnen,; M. Haase, Synthesis of 10 nm β-NaYF4:Yb,Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores. Angew. Chem., Int. Ed. 2016, 55, 1164-1167.
[96]
R. Arppe,; I. Hyppänen,; N. Perälä,; R. Peltomaa,; M. Kaiser,; C. Würth,; S. Christ,; U. Resch-Genger,; M. Schäferling,; T. Soukka, Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 2015, 7, 11746-11757.
[97]
C. Würth,; S. Fischer,; B. Grauel,; A. P. Alivisatos,; U. Resch-Genger, Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922-4928.
[98]
M. A. C. Dos Santos,; E. Antic-Fidancev,; J. Y. Gesland,; J. C. Krupa,; M. Lemaître-Blaise,; P. Porcher, Absorption and fluorescence of Er3+-doped LiYF4: Measurements and simulation. J. Alloys Compd. 1998, 275-277, 435-441.
[99]
A. Bensalah,; Y. Guyot,; M. Ito,; A. Brenier,; H. Sato,; T. Fukuda,; G. Boulon, Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality. Opt. Mater. 2004, 26, 375-383.
[100]
E. Garcia,; R. R. Ryan, Structure of the laser host material LiYF4. Acta Crystallogr. Sec. C 1993, 49, 2053-2054.
[101]
R. E. Thoma,; C. F. Weaver,; H. A. Friedman,; H. Insley,; L. A. Harris,; H. A. Yakel, Jr. Phase equilibria in the system LiF—YF3. J. Phys. Chem. 1961, 65, 1096-1099.
[102]
B. Spinger,; V. P. Danilov,; A. M. Prokhorov,; L. O. Schwan,; D. Schmid, Up conversion processes in yttrium-lithium-flouride crystals co-doped with erbium and ytterbium ions. In Proceedings of XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, Kazan, Russian Federation, 2002, pp 191-203.
[103]
X. Chen,; W. Xu,; H. W. Song,; C. Chen,; H. P. Xia,; Y. S. Zhu,; D. L. Zhou,; S. B. Cui,; Q. L. Dai,; J. Z. Zhang, Highly efficient LiYF4:Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application. ACS Appl. Mater. Interfaces 2016, 8, 9071-9079.
[104]
D. Saleta Reig,; B. Grauel,; V. A. Konyushkin,; A. N. Nakladov,; P. P. Fedorov,; D. Busko,; I. A. Howard,; B. S. Richards,; U. Resch- Genger,; S. V. Kuznetsov, et al. Upconversion properties of SrF2:Yb3+,Er3+ single crystals. J. Mater. Chem. C 2020, 8, 4093-4101.
File
12274_2020_3116_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 June 2020
Revised: 11 September 2020
Accepted: 14 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© The Author(s) 2020

Acknowledgements

We thank the German Science Foundation DFG for financial support (grants RE 1203/18-1 and HA 1649/7-1).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return