Journal Home > Volume 14 , Issue 3

Chemotherapeutic and radiation therapy have emerged as two most important treatment strategies to treat cancer in clinical practice; however, to improve anticancer efficacy, combination chemotherapy still remains challenge. Dichloroacetate (DCA) could produce significant cytotoxic effects in certain tumor cells through its distinct mechanism. Radiation therapy with fast neutrons (FNT) has high relative biolgical effectiveness compared to other radiotherapeutics. Herein, we reported the combination chemotherapy with FNT for effective tumor growth inhibition with the assistance of a multilayered nanofiber loading DCA and DCA derivatives. We first synthesized a biodegradable polylysine to condense DCA with negative charge, or to conjugate DCA by condensing synthesis, to obtain Ion-DCA and Co-DCA, respectively. DCA, Ion-DCA or Co-DCA was then loaded into fibers to form multilayer drug-loaded mats. Upon adhesion on the surface of subcutaneous and orthotopic liver tumors, the multilayer drug-loaded mats realized a controllable release of DCA, which reversed the Warburg effect and inhibited cancer cell proliferation. Meantime, irradiation of fast neutrons could seriously damage DNA structure. Combination of the controllable release of DCA and FNT resulted in synergistic cell apoptosis in vitro, and the tumor inhibition in vivo. This study thus provides a new approach to integrate chemotherapy and FNT with the assistance of biocompatible nanofiber for synergistic tumor therapy.

File
12274_2020_3113_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2020
Revised: 07 September 2020
Accepted: 12 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51273194, 21975246 and 51903233).

Return