Journal Home > Volume 14 , Issue 3

Chemotherapeutic and radiation therapy have emerged as two most important treatment strategies to treat cancer in clinical practice; however, to improve anticancer efficacy, combination chemotherapy still remains challenge. Dichloroacetate (DCA) could produce significant cytotoxic effects in certain tumor cells through its distinct mechanism. Radiation therapy with fast neutrons (FNT) has high relative biolgical effectiveness compared to other radiotherapeutics. Herein, we reported the combination chemotherapy with FNT for effective tumor growth inhibition with the assistance of a multilayered nanofiber loading DCA and DCA derivatives. We first synthesized a biodegradable polylysine to condense DCA with negative charge, or to conjugate DCA by condensing synthesis, to obtain Ion-DCA and Co-DCA, respectively. DCA, Ion-DCA or Co-DCA was then loaded into fibers to form multilayer drug-loaded mats. Upon adhesion on the surface of subcutaneous and orthotopic liver tumors, the multilayer drug-loaded mats realized a controllable release of DCA, which reversed the Warburg effect and inhibited cancer cell proliferation. Meantime, irradiation of fast neutrons could seriously damage DNA structure. Combination of the controllable release of DCA and FNT resulted in synergistic cell apoptosis in vitro, and the tumor inhibition in vivo. This study thus provides a new approach to integrate chemotherapy and FNT with the assistance of biocompatible nanofiber for synergistic tumor therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The associated killing of hepatoma cells using multilayer drug- loaded mats combined with fast neutron therapy

Show Author's information Yanxin Qi1,2,3Shiwei Jing4Shasha He2Hejian Xiong2Guohua Yang5Yubin Huang2( )Ningyi Jin1,3( )
Medical College, Yanbian University, Yanji 133002, China
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun 130122, China
Northeast Normal University, Changchun 130024, China
Changchun Medical College, Changchun 130031, China

Abstract

Chemotherapeutic and radiation therapy have emerged as two most important treatment strategies to treat cancer in clinical practice; however, to improve anticancer efficacy, combination chemotherapy still remains challenge. Dichloroacetate (DCA) could produce significant cytotoxic effects in certain tumor cells through its distinct mechanism. Radiation therapy with fast neutrons (FNT) has high relative biolgical effectiveness compared to other radiotherapeutics. Herein, we reported the combination chemotherapy with FNT for effective tumor growth inhibition with the assistance of a multilayered nanofiber loading DCA and DCA derivatives. We first synthesized a biodegradable polylysine to condense DCA with negative charge, or to conjugate DCA by condensing synthesis, to obtain Ion-DCA and Co-DCA, respectively. DCA, Ion-DCA or Co-DCA was then loaded into fibers to form multilayer drug-loaded mats. Upon adhesion on the surface of subcutaneous and orthotopic liver tumors, the multilayer drug-loaded mats realized a controllable release of DCA, which reversed the Warburg effect and inhibited cancer cell proliferation. Meantime, irradiation of fast neutrons could seriously damage DNA structure. Combination of the controllable release of DCA and FNT resulted in synergistic cell apoptosis in vitro, and the tumor inhibition in vivo. This study thus provides a new approach to integrate chemotherapy and FNT with the assistance of biocompatible nanofiber for synergistic tumor therapy.

Keywords: combination therapy, fast neutron therapy, dichloroacetate, control release, subcutaneous or orthotopic tumor model

References(39)

[1]
S. S. He,; J. C. Li,; Y. Lyu,; J. G. Huang,; K. Y. Pu, Near-infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy. J. Am. Chem. Soc. 2020, 142, 7075-7082.
[2]
R. S. Riley,; C. H. June,; R. Langer,; M. J. Mitchell, Delivery technologies for cancer immunotherapy. Nat. Rev. Drug. Dis. 2019, 18, 175-196.
[3]
J. C. Li,; D. Cui,; J. G. Huang,; S. S. He,; Z. B. Yang,; Y. Zhang,; Y. Luo,; K. Y. Pu, Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 12680-12687.
[4]
N. N. Shao,; Y. X. Qi,; H. T. Lu,; D. Y. He,; B. Li,; Y. B. Huang, Photostability highly improved nanoparticles based on IR-780 and negative charged copolymer for enhanced photothermal therapy. ACS Biomater. Sci. Eng. 2019, 5, 795-804.
[5]
H. S. Jung,; P. Verwilst,; A. Sharma,; J. Shin,; J. L. Sessler,; J. S. Kim, Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280-2297.
[6]
H. Abrahamse,; M. R. Hamblin, New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347-364.
[7]
Y. Y. Jiang,; J. C. Li,; Z. L. Zeng,; C. Xie,; Y. Lyu,; K. Y. Pu, Organic photodynamic nanoinhibitor for synergistic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 8161-8165.
[8]
J. C. Li,; J. G. Huang,; Y. Lyu,; J. S. Huang,; Y. Y. Jiang,; C. Xie,; K. Y. Pu, Photoactivatable organic semiconducting pro-nanoenzymes. J. Am. Chem. Soc. 2019, 141, 4073-4079.
[9]
W. D. Ji,; B. Sun,; C. Q. Su, Targeting micrornas in cancer gene therapy. Genes. 2017, 8, 21.
[10]
Y. X. Qi,; H. H. Guo,; N. N. Hu,; D. Y. He,; S. Zhang,; Y. J. Chu,; Y. B. Huang,; X. Li,; L. L. Sun,; N. Y. Jin, Preclinical pharmacology and toxicology study of ad-htert-e1a-apoptin, a novel dual cancer- specific oncolytic adenovirus. Toxicol. Appl. Pharm. 2014, 280, 362-369.
[11]
G. W. Barendsen, Dose-survival curves of human cells in tissue culture irradiated with alpha-, beta-, 20-kV. X- and 200-kV. X-radiation. Nature 1962, 193, 1153-1155.
[12]
G. E. Laramore,; J. T. Griffith,; M. Boespflug,; J. G. Pelton,; T. Griffin,; B. R. Griffin,; K. J. Russell,; W. Koh,; R. G. Parker,; L. W. Davis, Fast neutron radiotherapy for sarcomas of soft tissue, bone, and cartilage. Am. J. Clin. Oncol. 1989, 12, 320-326.
[13]
R. J. Berry,; R. Oliver,; E. H. Porter, A fast-neutron source for radiotherapy. Nature. 1963, 199, 923.
[14]
R. L. Gragg,; R. M. Humphrey,; R. E. Meyn, The response of chinese hamster ovary cells to fast neutron radiotherapy beams: I. Relative biological effectiveness and oxygen enhancement ratio. Radiat. Res. 1976, 65, 71-82.
[15]
S. B. Curtis, An analysis of human kidney cell oxygen-enhancement ratios for fast-neutron beams and a prediction for negative pion beams. Radiat. Res. 1971, 46, 557-579.
[16]
H. M. Specht,; T. Neff,; W. Reuschel,; F. M. Wagner,; S. Kampfer,; J. J. Wilkens,; W. Petry,; S. E. Combs, Paving the road for modern particle therapy—What can we learn from the experience gained with fast neutron therapy in munich? Front. Oncol. 2015, 5, 262.
[17]
M. S. Sasaki,; S. Endo,; M. Hoshi,; T. Nomura, Neutron relative biological effectiveness in hiroshima and nagasaki atomic bomb survivors: A critical review. J. Radiat. Res. 2016, 57, 583-595.
[18]
K. Satoh,; H. Yasuda,; H. Kawakami,; S. Tashiro, Relative biological effectiveness of neutrons derived from the excess relative risk model with the atomic bomb survivors data managed by hiroshima university. Radiat. Prot. Dosim. 2018, 180, 346-350.
[19]
F. Hiraga,; T. Ooie, Synergistic effects of fast-neutron dose per epithermal neutron and 10B concentration on relative-biological- effectiveness dose for accelerator-based boron neutron capture therapy. Appl. Radiat. Isotopes 2019, 144, 1-4.
[20]
A. Zabihi,; J. Tello,; S. Incerti,; Z. Francis,; G. Forozani,; F. Semsarha,; A. Moslehi,; M. A. Bernal, Determination of fast neutron rbe using a fully mechanistic computational model. Appl. Radiat. Isotopes 2020, 156, 108952.
[21]
M. J. Luderer,; P. De La Puente,; A. K. Azab, Advancements in tumor targeting strategies for boron neutron capture therapy. Pharm. Res. 2015, 32, 2824-2836.
[22]
S. I. Masunaga,; K. Ono,; K. Akuta,; M. Akaboshi,; M. Abe,; K. Ando,; S. Koike, The radiosensitivity of quiescent cell populations in murine solid tumors in irradiation with fast neutrons. Int. J. Radiat. Oncol. 1994, 29, 239-242.
[23]
D. L. Schwartz,; J. Einck,; J. Bellon,; G. E. Laramore, Fast neutron radiotherapy for soft tissue and cartilaginous sarcomas at high risk for local recurrence. Int. J. Radiat. Oncol. 2001, 50, 449-456.
[24]
S. W. Jing,; H. H. Guo,; Y. X. Qi,; G. F. Yang,; Y. B. Huang, A portable fast neutron irradiation system for tumor therapy. Appl. Radiat. Isotopes 2020, 160, 109138.
[25]
S. Pavlides,; D. Whitaker-Menezes,; R. Castello-Cros,; N. Flomenberg,; A. K. Witkiewicz,; P. G. Frank,; M. C. Casimiro,; C. G. Wang,; P. Fortina,; S. Addya, The reverse warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009, 8, 3984-4001.
[26]
J. B. Spinelli,; H. Yoon,; A. E. Ringel,; S. Jeanfavre,; C. B. Clish,; M. C. Haigis, Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 2017, 358, 941-946.
[27]
E. H. Fang,; J. Q. Wang,; M. Hong,; L. D. Zheng,; Q. S. Tong, Valproic acid suppresses warburg effect and tumor progression in neuroblastoma. Biochem. Biophys. Res. Commun. 2019, 508, 9-16.
[28]
J. H. Hendry,; C. S. Potten,; C. Chadwick,; M. Bianchi, Cell death (apoptosis) in the mouse small intestine after low doses: Effects of dose-rate, 14.7 meV neutrons, and 600 meV (maximum energy) neutrons. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1982, 42, 611-620.
[29]
D. X. Liu,; S. Liu,; X. B. Jing,; X. Y. Li,; W. L. Li,; Y. B. Huang, Necrosis of cervical carcinoma by dichloroacetate released from electrospun polylactide mats. Biomaterials 2012, 33, 4362-4369.
[30]
D. X. Liu,; F. F. Wang,; J. Yue,; X. B. Jing,; Y. B. Huang, Metabolism targeting therapy of dichloroacetate-loaded electrospun mats on colorectal cancer. Drug. Deliv. 2015, 22, 136-143.
[31]
Z. Y. Zhang,; S. Liu,; Y. X. Qi,; D. F. Zhou,; Z. G. Xie,; X. B. Jing,; X. S. Chen,; Y. B. Huang, Time-programmed dca and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J. Control. Release 2016, 235, 125-133.
[32]
A. H. W. Nias,; D. Greene,; M. Fox,; R. L. Thomas, Effect of 14 mev monoenergetic neutrons on hela and p388f cells in vitro. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1968, 13, 449-456.
[33]
C. Wu,; Q. Xu,; X. Y. Chen,; J. G. Liu, Delivery luteolin with folacin-modified nanoparticle for glioma therapy. Int. J. Nanomedicine 2019, 14, 7515-7531.
[34]
G. M. Grass,; S. A. Sweetana, In vitro measurement of gastrointestinal tissue permeability using a new diffusion cell. Pharm. Res. 1988, 5, 372-376.
[35]
S. Chen,; A. C. Cheng,; M. S. Wang,; X. Peng, Detection of apoptosis induced by new type gosling viral enteritis virus in vitro through fluorescein annexin v-fitc/pi double labeling. World. J. Gastroenterol. 2008, 14, 2174-2178.
[36]
V. Karthick,; S. Panda,; V. G. Kumar,; D. Kumar,; L. K. Shrestha,; K. Ariga,; K. Vasanth,; S. Chinnathambi,; T. S. Dhas,; K. S. U. Suganya, Quercetin loaded plga microspheres induce apoptosis in breast cancer cells. Appl. Surf. Sci. 2019, 487, 211-217.
[37]
M. Van Engeland,; L. J. M. Nieland,; F. C. S. Ramaekers,; B. Schutte,; C. P. M. Reutelingsperger, Annexin v-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry Part A 1998, 31, 1-9.
[38]
Z. Darzynkiewicz,; X. Li,; J. P. Gong, Assays of cell viability: Discrimination of cells dying by apoptosis. Method. Cell. Biol. 1994, 41, 15-38.
[39]
M. Sun,; D. P. Li,; X. Wang,; L. He,; X. D. Lv,; Y. Xu,; R. P. Tang, Intestine-penetrating, pH-sensitive and double-layered nanoparticles for oral delivery of doxorubicin with reduced toxicity. J. Mater. Chem. B 2019, 7, 3692-3703.
File
12274_2020_3113_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2020
Revised: 07 September 2020
Accepted: 12 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51273194, 21975246 and 51903233).

Return