Journal Home > Volume 14 , Issue 3

Biomaterial based scaffolds for treating large bone defects require excellent biocompatibility and osteoconductivity. Here we report on the fabrication of hydroxyapatite-dendritic mesoporous silica nanoparticles (HA-DMSN) based scaffolds with hierarchical micro-pores (5 µm) and nano-pores (6.4 nm), and their application for bone regeneration. The in vitro studies demonstrated good biocompatibility of dissolution extracts, as well as enhanced osteogenic potential indicated by dose-dependent upregulation of bone marker gene expression (osteocalcin gene (OCN), osteopontin gene (OPN), collagen type I alpha 1 gene (CoL1A1), runt-related transcription factor 2 gene (RUNX2), and integrin-binding sialoprotein gene (IBSP)), alkaline phosphatise (ALP) activity, and alizarin red staining. The in vivo studies showed that HA-DMSN scaffolds significantly increased bone formation in a rat cranial bone defect model after 4 weeks healing. Our study provides a simple method to fabricate promising inorganic scaffolds with hierarchical pores for bone tissue engineering.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo

Show Author's information Chang Lei1,§Yuxue Cao1,2,§Sepanta Hosseinpour2Fang Gao1Jingyu Liu3Jianye Fu1Reuben Staples2Saso Ivanovski2( )Chun Xu2( )
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia

§ Chang lei and Yuxue Cao contribute equally to this work.

Abstract

Biomaterial based scaffolds for treating large bone defects require excellent biocompatibility and osteoconductivity. Here we report on the fabrication of hydroxyapatite-dendritic mesoporous silica nanoparticles (HA-DMSN) based scaffolds with hierarchical micro-pores (5 µm) and nano-pores (6.4 nm), and their application for bone regeneration. The in vitro studies demonstrated good biocompatibility of dissolution extracts, as well as enhanced osteogenic potential indicated by dose-dependent upregulation of bone marker gene expression (osteocalcin gene (OCN), osteopontin gene (OPN), collagen type I alpha 1 gene (CoL1A1), runt-related transcription factor 2 gene (RUNX2), and integrin-binding sialoprotein gene (IBSP)), alkaline phosphatise (ALP) activity, and alizarin red staining. The in vivo studies showed that HA-DMSN scaffolds significantly increased bone formation in a rat cranial bone defect model after 4 weeks healing. Our study provides a simple method to fabricate promising inorganic scaffolds with hierarchical pores for bone tissue engineering.

Keywords: hydroxyapatite, tissue engineering, scaffolds, dendritic mesoporous silica nanoparticles

References(60)

[1]
W. G. De Long, Jr.; T. A. Einhorn,; K. Koval,; M. McKee,; W. Smith,; R. Sanders,; T. Watson, Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J. Bone Joint Surg. Am. 2007, 89, 649-658.
[2]
A. Oryan,; S. Alidadi,; A. Moshiri,; N. Maffulli, Bone regenerative medicine: Classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9, 18.
[3]
S. Bose,; S. Vahabzadeh,; A. Bandyopadhyay, Bone tissue engineering using 3D printing. Mater. Today 2013, 16, 496-504.
[4]
Y. X. Cao,; L. Xiao,; Y. F. Cao,; A. Nanda,; C. Xu,; Q. S. Ye, 3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation. Biochem. Biophys. Res. Commun. 2019, 512, 889-895.
[5]
H. Yi,; F. U. Rehman,; C. Q. Zhao,; B. Liu,; N. Y. He, Recent advances in Nano scaffolds for bone repair. Bone Res. 2016, 4, 16050.
[6]
T. Gong,; J. Xie,; J. F. Liao,; T. Zhang,; S. Y. Lin,; Y. F. Lin, Nanomaterials and bone regeneration. Bone Res. 2015, 3, 15029.
[7]
M. J. Hill,; B. W. Qi,; R. Bayaniahangar,; V. Araban,; Z. Bakhtiary,; M. R. Doschak,; B. C. Goh,; M. Shokouhimehr,; H. Vali,; J. F. Presley, et al. Nanomaterials for bone tissue regeneration: Updates and future perspectives. Nanomedicine 2019, 14, 2987-3006.
[8]
C. Xu,; L. Xiao,; Y. X. Cao,; Y. He,; C. Lei,; Y. Xiao,; W. J. Sun,; S. Ahadian,; X. T. Zhou,; A. Khademhosseini, et al. Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Res. 2020, 13, 2323-2331.
[9]
H. R. R. Ramay,; M. Zhang, Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 2004, 25, 5171-5180.
[10]
X. J. Wang,; T. Lou,; W. H. Zhao,; G. J. Song,; C. Y. Li,; G. P. Cui, The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering. J. Biomater. Appl. 2016, 30, 1545-1551.
[11]
T. Lemaire,; T. T. Pham,; E. Capiez-Lernout,; N. H. De Leeuw,; S. Naili, Water in hydroxyapatite nanopores: Possible implications for interstitial bone fluid flow. J. Biomech. 2015, 48, 3066-3071.
[12]
L. D. You,; S. Weinbaum,; S. C. Cowin,; M. B. Schaffler, Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2004, 278A, 505-513.
[13]
I. I. Slowing,; B. G. Trewyn,; S. Giri,; V. S. Y. Lin, Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225-1236.
[14]
M. Vallet-Regí,; M. M. García,; M. Colilla, Biomedical Applications of Mesoporous Ceramics: Drug Delivery, Smart Materials and Bone Tissue Engineering; CRC Press, Boca Raton, 2012.
[15]
C. Xu,; Y. X. Cao,; C. Lei,; Z. H. Li,; T. Kumeria,; A. K. Meka,; J. Xu,; J. Y. Liu,; C. Yan,; L. H. Luo, et al. Polymer-mesoporous silica nanoparticle core-shell nanofibers as a dual-drug-delivery system for guided tissue regeneration. ACS Appl. Nano Mater. 2020, 3, 1457-1467.
[16]
C. Xu,; C. Lei,; C. Z. Yu, Mesoporous silica nanoparticles for protein protection and delivery. Front. Chem. 2019, 7, 290.
[17]
C. Xu,; C. Lei,; L. L. Huang,; J. Zhang,; H. W. Zhang,; H. Song,; M. H. Yu,; Y. D. Wu,; C. Chen,; C. Z. Yu, Glucose-responsive nanosystem mimicking the physiological insulin secretion via an enzyme-polymer layer-by-layer coating strategy. Chem. Mater. 2017, 29, 7725-7732.
[18]
C. Xu,; M. H. Yu,; O. Noonan,; J. Zhang,; H. Song,; H. W. Zhang,; C. Lei,; Y. T. Niu,; X. D. Huang,; Y. N. Yang, et al. Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery. Small 2015, 11, 5949-5955.
[19]
C. T. Wu,; Y. F. Zhang,; Y. H. Zhou,; W. Fan,; Y. Xiao, A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: Physiochemistry and in vivo osteogenesis. Acta Biomater. 2011, 7, 2229-2236.
[20]
M. C. Shi,; Y. H. Zhou,; J. Shao,; Z. T. Chen,; B. T. Song,; J. Chang,; C. T. Wu,; Y. Xiao, Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 2015, 21, 178-189.
[21]
N. N. Shao,; J. S. Guo,; Y. Y. Guan,; H. H. Zhang,; X. Y. Li,; X. S. Chen,; D. F. Zhou,; Y. B. Huang, Development of organic/inorganic compatible and sustainably bioactive composites for effective bone regeneration. Biomacromolecules 2018, 19, 3637-3648.
[22]
A. Das,; D. Pamu, A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Mater. Sci. Eng.: C 2019, 101, 539-563.
[23]
M. Degli Esposti,; F. Chiellini,; F. Bondioli,; D. Morselli,; P. Fabbri, Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Mater. Sci. Eng.: C 2019, 100, 286-296.
[24]
M. Bohner,; L. Galea,; N. Doebelin, Calcium phosphate bone graft substitutes: Failures and hopes. J. Eur. Ceram. Soc. 2012, 32, 2663-2671.
[25]
W. Tasia,; C. Lei,; Y. X. Cao,; Q. S. Ye,; Y. He,; C. Xu, Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles. Nanoscale 2020, 12, 2328-2332.
[26]
H. M. Li,; H. L. Guo,; C. Lei,; L. Liu,; L. Q. Xu,; Y. P. Feng,; J. Ke,; W. Fang,; H. Song,; C. Xu, et al. Nanotherapy in joints: Increasing endogenous hyaluronan production by delivering hyaluronan synthase 2. Adv. Mater. 2019, 31, 1904535.
[27]
C. Xu,; Y. T. Niu,; A. Popat,; S. Jambhrunkar,; S. Karmakar,; C. Z. Yu, Rod-like mesoporous silica nanoparticles with rough surfaces for enhanced cellular delivery. J. Mater. Chem. B 2014, 2, 253-256.
[28]
Y. Chen,; H. R. Chen,; J. L. Shi, In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144-3176.
[29]
C. Lei,; C. Xu,; A. Nouwens,; C. Z. Yu, Ultrasensitive ELISA+ enhanced by dendritic mesoporous silica nanoparticles. J. Mater. Chem. B 2016, 4, 4975-4979.
[30]
M. Kalantari,; T. Ghosh,; Y. Liu,; J. Zhang,; J. Zou,; C. Lei,; C. Z. Yu, Highly thiolated dendritic mesoporous silica nanoparticles with high-content gold as nanozymes: The nano-gold size matters. ACS Appl. Mater. Interfaces 2019, 11, 13264-13272.
[31]
L. Chen,; X. J. Zhou,; C. L. He, Mesoporous silica nanoparticles for tissue-engineering applications. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1573.
[32]
B. G. Trewyn,; C. M. Whitman,; V. S. Y. Lin, Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett. 2004, 4, 2139-2143.
[33]
I. Izquierdo-Barba,; M. Colilla,; M. Vallet-Regí, Nanostructured mesoporous silicas for bone tissue regeneration. J. Nanomater. 2008, 2008, 106970.
[34]
X. J. Zhou,; W. Z. Weng,; B. Chen,; W. Feng,; W. Z. Wang,; W. Nie,; L. Chen,; X. M. Mo,; J. C. Su,; C. L. He, Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. J. Mater. Chem. B 2018, 6, 740-752.
[35]
K. X. Qiu,; B. Chen,; W. Nie,; X. J. Zhou,; W. Feng,; W. Z. Wang,; L. Chen,; X. M. Mo,; Y. Z. Wei,; C. L. He, Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly(L-lactic acid)/poly(ε-caprolactone) composite scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 4137-4148.
[36]
Q. Q. Yao,; Y. X. Liu,; B. Selvaratnam,; R. T. Koodali,; H. L. Sun, Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J. Control. Release 2018, 279, 69-78.
[37]
W. Cui,; Q. Q. Liu,; L. Yang,; K. Wang,; T. F. Sun,; Y. H. Ji,; L. P. Liu,; W. Yu,; Y. Z. Qu,; J. W. Wang, et al. Sustained delivery of BMP-2-related peptide from the true bone ceramics/hollow mesoporous silica nanoparticles scaffold for bone tissue regeneration. ACS Biomater. Sci. Eng. 2018, 4, 211-221.
[38]
J. Y. Fu,; Z. Y. Gu,; Y. Liu,; J. Zhang,; H. Song,; Y. N. Yang,; Y. Yang,; O. Noonan,; J. Tang,; C. Z. Yu, Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chem. Sci. 2019, 10, 10388-10394.
[39]
W. Stöber,; A. Fink,; E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.
[40]
A. Mathew,; C. Vaquette,; S. Hashimi,; I. Rathnayake,; F. Huygens,; D. W. Hutmacher,; S. Ivanovski, Antimicrobial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration. Adv. Healthc. Mater. 2017, 6, 1601345.
[41]
E. Nejati,; H. Mirzadeh,; M. Zandi, Synthesis and characterization of Nano-hydroxyapatite rods/poly(L-lactide acid) composite scaffolds for bone tissue engineering. Compos. Part A: Appl. Sci. Manuf. 2008, 39, 1589-1596.
[42]
V. K. Mishra,; S. B. Rai,; B. P. Asthana,; O. Parkash,; D. Kumar, Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: Structural and spectroscopic studies. Ceram. Int. 2014, 40, 11319-11328.
[43]
T. T. Li,; Y. Liu,; S. C. Qi,; X. Q. Liu,; L. Huang,; L. B. Sun, Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base. J. Colloid Interface Sci. 2018, 526, 366-373.
[44]
B. J. Kwon,; J. Kim,; Y. H. Kim,; M. H. Lee,; H. S. Baek,; D. H. Lee,; H. L. Kim,; H. J. Seo,; M. H. Lee,; S. Y. Kwon, et al. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Artif. Organs 2013, 37, 663-670.
[45]
Y. Kuang,; D. Yuan,; Y. Zhang,; A. Kao,; X. W. Du,; B. Xu, Interactions between cellular proteins and morphologically different nanoscale aggregates of small molecules. RSC Adv. 2013, 3, 7704-7707.
[46]
V. Karageorgiou,; D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474-5491.
[47]
J. C. Tang,; Y. Gu,; H. B. Zhang,; L. Wu,; Y. Xu,; J. N. Mao,; T. W. Xin,; T. J. Ye,; L. F. Deng,; W. G. Cui, et al. Outer-inner dual reinforced micro/Nano hierarchical scaffolds for promoting osteogenesis. Nanoscale 2019, 11, 15794-15803.
[48]
X. Pei,; L. Ma,; B. Q. Zhang,; J. X. Sun,; Y. Sun,; Y. J. Fan,; Z. R. Gou,; C. C. Zhou,; X. D. Zhang, Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Biofabrication 2017, 9, 045008.
[49]
D. Barbieri,; H. P. Yuan,; X. M. Luo,; S. Farè,; D. W. Grijpma,; J. D. De Bruijn, Influence of polymer molecular weight in osteoinductive composites for bone tissue regeneration. Acta Biomater. 2013, 9, 9401-9413.
[50]
N. Groen,; H. P. Yuan,; D. G. A, J. Hebels,; G. Koçer,; F. Mbuyi,; V. LaPointe,; R. Truckenmüller,; C. A. Van Blitterswijk,; P. Habibović,; J. De Boer, Linking the transcriptional landscape of bone induction to biomaterial design parameters. Adv. Mater. 2017, 29, 1603259.
[51]
M. Vallet-Regí,; L. Ruiz-González,; I. Izquierdo-Barba,; J. M. González- Calbet, Revisiting silica based ordered mesoporous materials: Medical applications. J. Mater. Chem. 2006, 16, 26-31.
[52]
M. Vallet-Regí, Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem.—Eur. J. 2006, 12, 5934-5943.
[53]
F. Balas,; M. Manzano,; P. Horcajada,; M. Vallet-Regí, Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J. Am. Chem. Soc. 2006, 128, 8116-8117.
[54]
F. Hoffmann,; M. Cornelius,; J. Morell,; M. Fröba, Silica-based mesoporous organic—inorganic hybrid materials. Angew. Chem., Int. Ed. 2006, 45, 3216-3251.
[55]
F. Hoffmann,; M. J. C. S. R. Fröba, Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem. Soc. Rev. 2011, 40, 608-620.
[56]
E. M. Carlisle, Silicon: A possible factor in bone calcification. Science 1970, 167, 279-280.
[57]
E. M. Carlisle, In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. J. Nutr. 1976, 106, 478-484.
[58]
K. Dashnyam,; G. Z. Jin,; J. H. Kim,; R. Perez,; J. H. Jang,; H. W. Kim, Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials 2017, 116, 145-157.
[59]
C. H. Kong,; C. Steffi,; Z. L. Shi,; W. Wang, Development of mesoporous bioactive glass nanoparticles and its use in bone tissue engineering. 2018, J. Biomed. Mater. Res. Part B: Appl. Biomater. 2018, 106, 2878-2887.
[60]
C. L. Dai,; H. Guo,; J. X. Lu,; J. L. Shi,; J. Wei,; C. S. Liu, Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μCT. Biomaterials 2011, 32, 8506-8517.
File
12274_2020_3112_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 May 2020
Revised: 09 September 2020
Accepted: 12 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors acknowledge the support from University of Queensland (UQ) Early Career Researcher Grant (No. 1717673). C. Lei acknowledges the support of Advanced Queensland Fellowship. C. Xu acknowledges the support of National Health & Medical Research Council of Australia (NHMRC) Early Career Fellowship. S. Hosseinpour acknowledges the support of The University of Queensland International (UQI) Scholarship. The authors acknowledge the supports from the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, the University of Queensland.

Return