Journal Home > Volume 14 , Issue 3

Atherosclerotic cardiovascular disease is the leading cause of mortality in the world. A driving feature of atherosclerotic plaque formation is dysfunctional efferocytosis. Because the "don’t eat me" molecule CD47 is upregulated in atherosclerotic plaque cores, CD47-blocking strategies can stimulate the efferocytic clearance of apoptotic cells and thereby help prevent the progression of plaque buildup. However, these therapies are generally costly and, in clinical and murine trials, they have resulted in side effects including anemia and reticulocytosis. Here, we developed and characterized an intracellular phagocytosis-stimulating treatment in the CD47-SIRPα pathway. We loaded a novel monocyte/macrophage-selective nanoparticle carrier system with a small molecule enzymatic inhibitor that is released in a pH-dependent manner to stimulate macrophage efferocytosis of apoptotic cell debris via the CD47-SIRPα signaling pathway. We demonstrated that single-walled carbon nanotubes (SWNTs) can selectively deliver tyrosine phosphatase inhibitor 1 (TPI) intracellularly to macrophages, which potently stimulates efferocytosis, and chemically characterized the nanocarrier. Thus, SWNT-delivered TPI can stimulate macrophage efferocytosis, with the potential to reduce or prevent atherosclerotic disease.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Macrophage-targeted single walled carbon nanotubes stimulate phagocytosis via pH-dependent drug release

Show Author's information Yapei Zhang1,2,§Jianqin Ye3,§Niloufar Hosseini-Nassab6Alyssa Flores3Irina Kalashnikova1,2Sesha Lakshmi Paluri1,2Mozhgan Lotfi3Nicholas J. Leeper3,4,5,( )Bryan Ronain Smith1,2,( )
Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, CA 94305, USA
Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA 94305, USA
Stanford Cardiovascular Institute, Stanford, CA 94305, USA
Department of Radiology, Stanford University School of Medicine, CA 94305, USA

§ Yapei Zhang and Jianqin Ye contributed equally to this work.

Nicholas J. Leeper and Bryan Ronain Smith contributed equally to this work.

Abstract

Atherosclerotic cardiovascular disease is the leading cause of mortality in the world. A driving feature of atherosclerotic plaque formation is dysfunctional efferocytosis. Because the "don’t eat me" molecule CD47 is upregulated in atherosclerotic plaque cores, CD47-blocking strategies can stimulate the efferocytic clearance of apoptotic cells and thereby help prevent the progression of plaque buildup. However, these therapies are generally costly and, in clinical and murine trials, they have resulted in side effects including anemia and reticulocytosis. Here, we developed and characterized an intracellular phagocytosis-stimulating treatment in the CD47-SIRPα pathway. We loaded a novel monocyte/macrophage-selective nanoparticle carrier system with a small molecule enzymatic inhibitor that is released in a pH-dependent manner to stimulate macrophage efferocytosis of apoptotic cell debris via the CD47-SIRPα signaling pathway. We demonstrated that single-walled carbon nanotubes (SWNTs) can selectively deliver tyrosine phosphatase inhibitor 1 (TPI) intracellularly to macrophages, which potently stimulates efferocytosis, and chemically characterized the nanocarrier. Thus, SWNT-delivered TPI can stimulate macrophage efferocytosis, with the potential to reduce or prevent atherosclerotic disease.

Keywords: atherosclerosis, macrophages, single-walled carbon nanotubes, phagocytosis, tyrosine phosphatase 1 (SHP-1) inhibitor

References(33)

[1]
J. Bejarano,; M. Navarro-Marquez,; F. Morales-Zavala,; J. O. Morales,; ; I. E. Araya-Fuentes,; Y. Flores,; H. E. Verdejo,; P. F. Castro,; S. Lavandero, et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: Evolution toward prospective theranostic approaches. Theranostics 2018, 8, 4710-4732.
[2]
I. Andreou,; S. Takahashi,; M. Tsuda,; K. Shishido,; A. P. Antoniadis,; M. I. Papafaklis,; S. Mizuno,; A. U. Coskun,; S. Saito, C. L. Feldman, et al. Atherosclerotic plaque behind the stent changes after bare-metal and drug-eluting stent implantation in humans: Implications for late stent failure? Atherosclerosis 2016, 252, 9-14.
[3]
W. Insull, Jr. The pathology of atherosclerosis: Plaque development and plaque responses to medical treatment. Am. J. Med. 2009, 122, S3-S14.
[4]
A. Frisinghelli,; A. Mafrici, Regression or reduction in progression of atherosclerosis, and avoidance of coronary events, with lovastatin in patients with or at high risk of cardiovascular disease. Clin. Drug Invest. 2007, 27, 591-604.
[5]
A. Yurdagul, Jr.; A. C. Doran,; B. S. Cai,; G. Fredman,; I. A. Tabas, Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front. Cardiovasc. Med. 2018, 4, 86.
[6]
Y. Kojima,; J. P. Volkmer,; K. McKenna,; M. Civelek,; A. J. Lusis,; C. L. Miller,; D. Direnzo,; V. Nanda,; J. Q. Ye,; A. J. Connolly, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 2016, 536, 86-90.
[7]
K. Weiskopf, Cancer immunotherapy targeting the CD47/SIRPα axis. Eur. J. Cancer 2017, 76, 100-109.
[8]
Y. Kanthi,; A. De La Zerda,; B. R. Smith, Nanotherapeutic Shots through the Heart of Plaque. ACS Nano 2020, 14, 1236-1242.
[9]
J. J. Ryan, CD47-Blocking Antibodies and Atherosclerosis. JACC Basic Transl. Sci. 2016, 1, 413-415.
[10]
B. R. Smith,; S. S. Gambhir, Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901-986.
[11]
B. R. Smith,; E. E. D. Ghosn,; H. Rallapalli,; J. A Prescher,; T. Larson,; L. A. Herzenberg,; S. S. Gambhir, Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 2014, 9, 481-487.
[12]
M. L. Schipper,; N.. Nakayama-Ratchford,; C. R. Davis,; N. W. S. Kam,; P. Chu,; Z. Liu,; X. M. Sun,; H. J. Dai,; S. S. Gambhir, A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 2008, 3, 216-221.
[13]
S. Alidori,; N. Akhavein,; D. L. J. Thorek,; K. Behling,; Y. Romin,; D. Queen,; B. J. Beattie,; K. Manova-Todorova,; M. Bergkvist,; D. A. Scheinberg, et al. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci. Transl. Med. 2016, 8, 331ra39.
[14]
M. Yang,; M. F. Zhang, Biodegradation of carbon nanotubes by macrophages. Front. Mater, 2019, 6, 225
[15]
H. A. Watson,; S. Wehenkel,; J. Matthews,; A. Ager, SHP-1: The next checkpoint target for cancer immunotherapy? Biochem. Soc. Trans. 2016, 44, 356-362.
[16]
T. L. Doane,; C. Burda, The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885-2911.
[17]
S. H. Shen,; Y. S. Wu,; Y. C. Liu,; D. C. Wu, High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017, 12, 4085-4109.
[18]
W. R. Zhuang,; Y. Wang,; P. F. Cui,; L. Xing,; J. Lee,; D. Kim,; H. L Jiang,; Y. K. Oh, Applications of π-π stacking interactions in the design of drug-delivery systems. J. Control. Release 2019, 294, 311-326.
[19]
B. Aslan,; B. Ozpolat,; A. K. Sood,; G. Lopez-Berestein, Nanotechnology in cancer therapy. J. Drug Target. 2013, 21, 904-913.
[20]
J. Yin,; Y. Chen,; Z. H. Zhang,; X. Han, Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers 2016, 8, 268.
[21]
P. N. Shah,; T. Y. Lin,; I. L. Aanei,; S. H. Klass,; B. R. Smith,; E. S. G. Shaqfeh, Extravasation of brownian spheroidal nanoparticles through vascular pores. Biophys. J. 2018, 115, 1103-1115.
[22]
X. J. Zhu,; C. Vo,; M. Taylor,; B. R. Smith, Non-spherical micro- and nanoparticles in nanomedicine. Mater. Horiz. 2019, 6, 1094-1121.
[23]
F. K. Swirski,; P. Libby,; E. Aikawa,; P. Alcaide,; F. W. Luscinskas,; R. Weissleder,; M. J. Pittet, Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 2007, 117, 195-205.
[24]
A. M. Flores,; N. Hosseini-Nassab,; K. U. Jarr,; J. Q. Ye,; X. J. Zhu,; R. Wirka,; A. L. Koh,; P. Tsantilas,; Y. Wang,; V. Nanda, et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 2020, 15, 154-161.
[25]
K. Weiskopf,; A. M. Ring,; C. C. M. Ho,; J. P. Volkmer,; A. M. Levin,; A. K. Volkmer,; E. Özkan,; N. B. Fernhoff,; M. Van De Rijn,; I. L.; Weissman, et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 2013, 341, 88-91.
[26]
E. J. Jang,; E. K. Lim,; Y. Choi,; E. Kim,; H. O. Kim,; D. J. Kim,; J. S. Suh,; Y. M. Huh,; S. Haam, π-Hyaluronan nanocarriers for CD44-targeted and pH-boosted aromatic drug delivery. J. Mater. Chem. B 2013, 1, 5686-5693.
[27]
Y. Kojima,; I. L. Weissman,; N. J. Leeper, The role of efferocytosis in atherosclerosis. Circulation 2017, 135, 476-489.
[28]
A. M. Flores,; J. Q. Ye,; K. U. Jarr,; N. H. Nassab,; B. R. Smith,; N. J. Leeper, Nanoparticle therapy for vascular diseases. Arterioscler., Thromb., Vasc. Biol. 2019, 39, 635-646.
[29]
Z. Liu,; A. C. Fan,; K. Rakhra,; S. Sherlock,; A. Goodwin,; X. Y. Chen,; Q. W. Yang,; D. W. Felsher,; H. J. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem., Int. Ed. 2009, 48, 7668-7672.
[30]
S. A. Abouelmagd,; B. Sun,; A. C. Chang,; Y. J. Ku,; Y. Yeo, Release kinetics study of poorly water-soluble drugs from nanoparticles: Are we doing it right? Mol. Pharmaceutics 2015, 12, 997-1003.
[31]
S. Kundu,; K. K. Fan,; M. L. Cao,; D. J. Lindner,; Z. J. Zhao,; E. Borden,; T. L. Yi, Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents. J. Immunol. 2010, 184, 6529-6536.
[32]
B. R. Smith,; C. Zavaleta,; J. Rosenberg,; R. Tong,; J. Ramunas,; Z. Liu,; H. J. Dai,; S. S. Gambhir, High-resolution, serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model. Nano Today 2013, 8, 126-137.
[33]
B. R. Smith,; P. Kempen,; D. Bouley,; A. Xu,; Z. Liu,; N. Melosh,; H. J. Dai,; R. Sinclair,; S. S. Gambhir, Shape matters: Intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett. 2012, 12, 3369-3377.
File
12274_2020_3111_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 March 2020
Revised: 10 September 2020
Accepted: 12 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This study was funded by an AHA Transformational Project grant (No. 18TPA34230113), NIH R01 CA244491, and Falk Catalyst grant. The authors wish to acknowledge Logan Soule for his support in writing the introduction, thank Robert Sinclair, Ai Leen Koh, and Yitian Zeng for their support in TEM characterization, thank Mahsa Gifani for her assistance, and Matthew Bernard and the MSU Flow Cytometry Core for support in Flow cytometry.

Return