Journal Home > Volume 14 , Issue 5

Direct synthesis of high-quality graphene on dielectric substrates is of great importance for the application of graphene-based electronics and optoelectronics. However, high-quality and uniform graphene film growth on dielectric substrates has proven challenging due to limited catalytic ability of dielectric substrates. Here, by employing a Cu ion implantation assisted method, high-quality and uniform graphene can be directly formed on various dielectric substrates including SiO2/Si, quartz glass, and sapphire substrates. The growth rate of graphene on the dielectric substrates was significantly improved due to the catalysis of Cu. Moreover, during the graphene growth process, the Cu atoms gradually evaporated away without involving any metal contamination. Furthermore, an interesting growth behavior of graphene on sapphire substrate was observed, and the results show the graphene domains growth tends to grow along the sapphire flat terraces. The ion implantation assisted approach could open up a new pathway for the direct synthesis of graphene and promote the potential application of graphene in electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ion implantation assisted synthesis of graphene on various dielectric substrates

Show Author's information Yunbiao ZhaoYue liYi ChenYuhan ChenDanqing ZhouZiqiang Zhao( )
State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

Abstract

Direct synthesis of high-quality graphene on dielectric substrates is of great importance for the application of graphene-based electronics and optoelectronics. However, high-quality and uniform graphene film growth on dielectric substrates has proven challenging due to limited catalytic ability of dielectric substrates. Here, by employing a Cu ion implantation assisted method, high-quality and uniform graphene can be directly formed on various dielectric substrates including SiO2/Si, quartz glass, and sapphire substrates. The growth rate of graphene on the dielectric substrates was significantly improved due to the catalysis of Cu. Moreover, during the graphene growth process, the Cu atoms gradually evaporated away without involving any metal contamination. Furthermore, an interesting growth behavior of graphene on sapphire substrate was observed, and the results show the graphene domains growth tends to grow along the sapphire flat terraces. The ion implantation assisted approach could open up a new pathway for the direct synthesis of graphene and promote the potential application of graphene in electronics.

Keywords: graphene, chemical vapor deposition (CVD), ion implantation, dielectric substrates

References(33)

[1]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; M. I. Katsnelson,; I. V. Grigorieva,; S. V. Dubonos,; A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
[3]
I. Meric,; M. Y. Han,; A. F. Young,; B. Ozyilmaz,; P. Kim,; K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654-659.
[4]
T. Gu,; N. Petrone,; J. F. McMillan,; A. Van Der Zande,; M. Yu,; G. Q. Lo,; D. L. Kwong,; J. Hone,; C. W. Wong, Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photon. 2012, 6, 554-559.
[5]
F. Bonaccorso,; Z. Sun,; T. Hasan,; A. C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 2010, 4, 611-622.
[6]
T. H. Han,; S. J. Kwon,; N. N. Li,; H. K. Seo,; W. T. Xu,; K. S. Kim,; T. W. Lee, Versatile p-type chemical doping to achieve ideal flexible graphene electrodes. Angew. Chem., Int. Ed. 2016, 55, 6197-6201.
[7]
T. R. Wu,; X. F. Zhang,; Q. H. Yuan,; J. C. Xue,; G. Y. Lu,; Z. H. Liu,; H. S. Wang,; H. M. Wang,; F. Ding,; Q. K. Yu, et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15, 43-47.
[8]
X. Z. Xu,; Z. H. Zhang,; J. C. Dong,; D. Yi,; J. J. Niu,; M. H. Wu,; L. Lin,; R. K. Yin,; M. Q. Li,; J. Y. Zhou, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074-1080.
[9]
S. Jin,; M. Huang,; Y. Kwon,; L. N. Zhang,; B. W. Li,; S. Oh,; J. C. Dong,; D. Luo,; M. Biswal,; B. V. Cunning et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 2018, 362, 1021-1025.
[10]
S. Lizzit,; R. Larciprete,; P. Lacovig,; M. Dalmiglio,; F. Orlando,; A. Baraldi,; L. Gammelgaard,; L. Barreto,; M. Bianchi,; E. Perkins, et al. Transfer-free electrical insulation of epitaxial graphene from its metal substrate. Nano Lett. 2012, 12, 4503-4507.
[11]
H. P. Wang,; X. D. Xue,; Q. Q. Jiang,; Y. L. Wang,; D. C. Geng,; L. Cai,; L. P. Wang,; Z. P. Xu,; G. Yu, Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 2019, 141, 11004-11008.
[12]
Z. W. Wang,; Z. Y. Xue,; M. Zhang,; Y. Q. Wang,; X. M. Xie,; P. K. Chu,; P. Zhou,; Z. F. Di,; X. Wang, Germanium-assisted direct growth of graphene on arbitrary dielectric substrates for heating devices. Small 2017, 13, 1700929.
[13]
J. B. Pang,; R. G. Mendes,; P. S. Wrobel,; M. D. Wlodarski,; H. Q. Ta,; L. Zhao,; L. Giebeler,; B. Trzebicka,; T. Gemming,; L. Fu, et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 2017, 11, 1946-1956.
[14]
X. D. Chen,; Z. L. Chen,; W. S. Jiang,; C. H. Zhang,; J. Y. Sun,; H. H. Wang,; W. Xin,; L. Lin,; M. K. Priydarshi,; H. Yang, Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 2017, 29, 1603428.
[15]
J. Y. Sun,; Y. B. Chen,; X. Cai,; B. J. Ma,; Z. L. Chen,; M. K. Priydarshi,; K. Chen,; T. Gao,; X. J Song,; Q. Q. Ji, et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res. 2015, 8, 3496-3504.
[16]
J. Y. Sun,; Y. B. Chen,; M. K. Priydarshi,; Z. Chen,; A. Bachmatiuk,; Z. Y. Zou,; Z. L. Chen,; X. J. Song,; Y. F. Gao,; M. H. Rümmeli, et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846-5854.
[17]
J. Y. Chen,; Y. L. Guo,; L. L. Jiang,; Z. P. Xu,; L. P. Huang,; Y. Z. Xue,; D. C. Geng,; B. Wu,; W. P. Hu,; G. Yu, et al. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 2014, 26, 1348-1353.
[18]
J. Hwang,; M. Kim,; D. Campbell,; H. A. Alsalman,; J. Y. Kwak,; S. Shivaraman,; A. R. Woll,; A. K. Singh,; R. G. Hennig,; S. Gorantla, Van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 2013, 7, 385-395.
[19]
L. C. Zhang,; Z. W. Shi,; Y. Wang,; R. Yang,; D. X. Shi,; G. Y. Zhang, Catalyst-free growth of nanographene films on various substrates. Nano Res. 2011, 4, 315-321.
[20]
Z. L. Chen,; B. L. Guan,; X. D. Chen,; Q. Zeng,; L. Lin,; R. Y. Wang,; M. K. Priydarshi,; J. Y. Sun,; Z. P. Zhang,; T. B. Wei, et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Res. 2016, 9, 3048-3055.
[21]
J. Y. Sun,; T. Gao,; X. J. Song,; Y. F. Zhao,; Y. W. Lin,; H. C. Wang,; D. L. Ma,; Y. B. Chen,; W. F. Xiang,; J. Wang, et al. Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J. Am. Chem. Soc. 2014, 136, 6574-6577.
[22]
S. Gaddam,; C. Bjelkevig,; S. P. Ge,; K. Fukutani,; P. A. Dowben,; J. A. Kelber, Direct graphene growth on MgO: Origin of the band gap. J. Phys. Condens. Matter 2011, 23, 072204.
[23]
W. Yang,; G. R. Chen,; Z. W. Shi,; C. C. Liu,; L. C. Zhang,; G. B. Xie,; M. Cheng,; D. M. Wang,; R. Yang,; D. X. Shi, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792-797.
[24]
H. Kim,; I. Song,; C. Park,; M. Son,; M. Hong,; Y. Kim,; J. S. Kim,; H. J. Shin,; J. Baik,; H. C. Choi, Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 2013, 7, 6575-6582.
[25]
P. Y. Teng,; C. C. Lu,; K. Akiyama-Hasegawa,; Y. C. Lin,; C. H. Yeh,; K. Suenaga,; P. W. Chiu, Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379-1384.
[26]
A. Ismach; C. Druzgalski; S. Penwell; A. Schwartzberg; M. Zheng; A. Javey; J. Bokor,; Y. G. Zhang, Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 2010, 10, 1542-1548.
[27]
G. Wang,; M. Zhang,; S. Liu,; X. M. Xie,; G. Q. Ding,; Y. Q. Wang,; P. K. Chu,; H. Gao,; W. Ren,; Q. H. Yuan, et al. Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach. Adv. Funct. Mater. 2015, 25, 3666-3675.
[28]
Y. B. Zhao,; X. Wang,; E. G. Fu,; D. Han,; P. P. Wang,; Z. M. Wu,; Y. Chen,; Y. H. Chen,; Z. Q. Zhao, Direct synthesis of high-quality nitrogen-doped graphene via ion implantation. Carbon 2018, 139, 732-739.
[29]
Y. B. Zhao,; D. Han,; X. Wang,; Z. Y. Hu,; Y. Chen,; Y. H. Chen,; D. Q. Zhou,; Y. Li,; E. G. Fu,; Z. Q. Zhao, A facile approach to direct growth of layer-tunable graphene on Ge substrates. Carbon 2019, 153, 776-782.
[30]
A. C. Ferrari,; D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.
[31]
J. Peszke,; M. Dulski,; A. Nowak,; K. Balin,; M. Zubko,; S. Sułowicz,; B. Nowak,; Z. Piotrowska-Seget,; E. Talik,; M. Wojtyniak, et al. Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents. RSC Adv. 2017, 7, 28092-28104.
[32]
T. Ghodselahi,; M. A. Vesaghi,; A. Shafiekhani,; A. Baghizadeh,; M. Lameii, XPS study of the Cu@Cu2O core-shell nanoparticles. Appl. Surf. Sci. 2008, 255, 2730-2734.
[33]
A. Rosenhahn,; J. Schneider,; C. Becker,; K. Wandelt, The formation of Al2O3-layers on Ni3Al(111). Appl. Surf. Sci. 1999, 142, 169-173.
Video
12274_2020_3106_MOESM2_ESM.mp4
File
12274_2020_3106_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 October 2019
Revised: 01 September 2020
Accepted: 09 September 2020
Published: 29 December 2020
Issue date: May 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 11875077). The authors acknowledge the support by the State Key Laboratory and Beijing Radiation Center.

Return