AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Confinement and antenna effect for ultrasmall Y2O3:Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications

Hongyi Xu1Wenjing Yu1Kai Pan1Guofeng Wang1( )Peifen Zhu2( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104, USA
Show Author Information

Graphical Abstract

Abstract

A novel host-guest luminous system with enhanced near-UV light absorption thereby enhanced luminescence are designed based on the synergism of quantum confinement, spatial confinement, and antenna effect, where ultrasmall Y2O3:Eu3+ nanocrystals are fixed inside MOF (Eu/Y-BTC) as supporting structure. The Eu/Y-BTC not only limits the size and leads to lattice distortion of Y2O3:Eu3+ nanocrystals and controls the distance between nanocrystals, but also promotes the light absorption and emission. The significantly red-shifted and broadened charge transfer band of Y2O3:Eu3+/(Eu/Y-BTC) leads to the excellent applications of Y2O3:Eu3+ in white light-emitting diodes (LEDs). Our results show that white light with superior color quality (CRI>90) and extremely high luminous efficacy (an LER of 335 lm/W) could be achieved using Y2O3:Eu3+/(Eu/Y-BTC) as red phosphor. The Y2O3:Eu3+/ (Eu/Y-BTC) also improves the photoelectric performance of dye-sensitized solar cells (DSSCs), not only because Y2O3:Eu3+/(Eu/Y-BTC) has a large specific surface area and the adsorption amount of the dye is increased, but also because the valence band position of Y2O3:Eu3+/(Eu/Y-BTC) is 2.41 eV, which can provide an additional energy level between the TiO2 and dye, promoting electron transfer. For these advantageous features, the multifunctional Y2O3:Eu3+/(Eu/Y-BTC) composite product will open new avenues in white LEDs and DSSCs.

Electronic Supplementary Material

Download File(s)
12274_2020_3104_MOESM1_ESM.pdf (3.7 MB)

References

[1]
G. F. Wang,; Q. Peng,; Y. D. Li, Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322-332.
[2]
H. Dong,; S. R. Du,; X. Y. Zheng,; G. M. Lyu,; L. D. Sun,; L. D. Li,; P. Z. Zhang,; C. Zhang,; C. H. Yan, Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725-10815.
[3]
J. Xu,; X. Y. Chen,; Y. S. Xu,; Y. P. Du,; C. H. Yan, Ultrathin 2D rare-earth nanomaterials: Compositions, syntheses, and applications. Adv. Mater. 2020, 32, 1806461.
[4]
X. Zhang,; W. Liu,; G. Z. Wei,; D. Banerjee,; Z. C. Hu,; J. Li, Systematic approach in designing rare-earth-free hybrid semiconductor phosphors for general lighting applications. J. Am. Chem. Soc. 2014, 136, 14230-14236.
[5]
N. Phung,; R. Félix,; D. Meggiolaro,; A. Al-Ashouri,; G. Sousa e Silva,; C. Hartmann,; J. Hidalgo,; H. Köbler,; E. Mosconi,; B. Lai, et al. The doping mechanism of halide perovskite unveiled by alkaline earth metals. J. Am. Chem. Soc. 2020, 142, 2364-2374.
[6]
C. Chen,; H. Li,; J. J. Jin,; X. Chen,; Y. Cheng,; Y. Zheng,; D. L. Liu,; L. Xu,; H. W. Song,; Q. L. Dai, Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700758.
[7]
J. Zhou,; Q. Liu,; W. Feng,; Y. Sun,; F. Y. Li, Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395-465.
[8]
E. Pan,; G. X. Bai,; B. R. Ma,; L. Lei,; L. H. Huang,; S. Q. Xu, Reversible enhanced upconversion luminescence by thermal and electric fields in lanthanide ions doped ferroelectric nanocomposites. Sci. China Mater. 2020, 63, 110-121.
[9]
Y. T. Zhong,; H. J. Dai, A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 2020, 13, 1281-1294.
[10]
L. Li,; C. K. Tsung,; Z. Yang,; G. D. Stucky,; L. D. Sun,; J. F. Wang,; C. H. Yan, Rare-earth-doped nanocrystalline titania microspheres emitting luminescence via energy transfer. Adv. Mater. 2008, 20, 903-908.
[11]
L. Y. Wang,; R. X. Yan,; Z. Y. Huo,; L. Wang,; J. H. Zeng,; J. Bao,; X. Wang,; Q. Peng,; Y. D. Li, Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 6054-6057.
[12]
Y. S. Xu,; Z. C. Zeng,; D. Zhang,; S. T. Liu,; X. Wang,; S. Li,; C. Y. Cheng,; J. X. Wang,; Y. Y. Liu,; G. J. H. De, et al. Upconversion lifetime imaging of highly-crystalline Gd-based fluoride nanocrystals featuring strong luminescence resulting from multiple luminescent centers. Adv. Opt. Mater. 2020, 8, 1901495.
[13]
Y. N. Ji,; W. Xu,; D. Y. Li,; D. L. Zhou,; X. Chen,; N. Ding,; J. Li,; N. Wang,; X. Bai,; H. W. Song, Semiconductor plasmon enhanced monolayer upconversion nanoparticles for high performance narrowband near-infrared photodetection. Nano Energy 2019, 61, 211-220.
[14]
Y. Wang,; K. Z. Zheng,; S. Y. Song,; D. Y. Fan,; H. J. Zhang,; X. G. Liu, Remote manipulation of upconversion luminescence. Chem. Soc. Rev. 2018, 47, 6473-6485.
[15]
S. F. Ji,; Y. Qu,; T. Wang,; Y. J. Chen,; G. F. Wang,; X. Li,; J. C. Dong,; Q. Y. Chen,; W. Y. Zhang,; Z. D. Zhang, et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651-10657.
[16]
G. F. Wang,; Q. Peng,; Y. D. Li, Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131, 14200-14201.
[17]
P. P. Lei,; R. An,; S. Yao,; Q. S. Wang; L. L. Dong,; X. Xu,; K. M. Du,; J. Feng,; H. J. Zhang, Ultrafast synthesis of novel hexagonal phase NaBiF4 upconversion nanoparticles at room temperature. Adv. Mater. 2017, 29, 1700505.
[18]
D. Wang,; R. H. Wang,; L. Y. Liu,; Y. Qu,; G. F. Wang,; Y. D. Li, Down-shifting luminescence of water soluble NaYF4: Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose. Sci. China Mater. 2017, 60, 68-74.
[19]
S. H. Wen,; J. J. Zhou,; K. Z. Zheng,; A. Bednarkiewicz,; X. G. Liu,; D. Y. Jin, Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415.
[20]
G. X. Bai,; Y. X. Lyu,; Z. H. Wu,; S. Q. Xu,; J. H. Hao, Lanthanide near-infrared emission and energy transfer in layered WS2/MoS2 heterostructure. Sci. China Mater. 2020, 63, 575-581.
[21]
X. Wang,; J. Zhuang,; Q. Peng,; Y. D. Li, A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.
[22]
L. T. Zhang,; W. M. Kang,; Q. Ma,; Y. F. Xie,; Y. L. Jia,; N. P. Deng,; Y. Z. Zhang,; J. Ju,; B. W. Cheng, Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln=La, Ce, Pr, and Nd): Morphology, structure, growth mechanism, and stability. J. Am. Chem. Soc. 2019, 141, 13134-13142.
[23]
J. S. Sui,; J. Y. Yan,; K. Wang,; G. S. Luo, Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Res. 2020, 13, 2837-2846.
[24]
M. Kaiser,; C. Würth,; M. Kraft,; T. Soukka,; U. Resch-Genger, Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4: Yb3+, Er3+ nanoparticles: Measurements and simulations. Nano Res. 2019, 12, 1871-1879.
[25]
W. Cheng,; F. Rechberger,; M. Niederberger, Three-dimensional assembly of yttrium oxide nanosheets into luminescent aerogel monoliths with outstanding adsorption properties. ACS Nano 2016, 10, 2467-2475.
[26]
J. D. Xiao,; L. L. Han,; J. Luo,; S. H. Yu,; H. L. Jiang, Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103-1107.
[27]
X. Ma,; L. Wang,; Q. Zhang,; H. L. Jiang, Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem. 2019, 131, 12303-12307.
[28]
J. S. Qin,; D. Y. Du,; W. Guan,; X. J. Bo,; Y. F. Li,; L. P. Guo,; Z. M. Su,; Y. Y. Wang,; Y. Q. Lan,; H. C. Zhou, Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J. Am. Chem. Soc. 2015, 137, 7169-7177.
[29]
W. X. Chen,; J. J. Pei,; C. T. He,; J. W. Wan,; H. L. Ren,; Y. Wang,; J. C. Dong,; K. L. Wu,; W. C. Cheong,; J. J. Mao, et al. Single tungsten atoms supported on mof-derived n-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.
[30]
R. Jiang,; T. X. Liu,; R. J. Wu,; C. Guo,; Y. G. Chen,; G. L. Xiang,; L. Y. Wang, Tailoring N-coordination environment by ligand competitive thermolysis strategy for efficient oxygen reduction. ACS Appl. Mater. Interfaces 2020, 12, 7270-7276.
[31]
G. F. Hu,; L. Shang,; T. Sheng,; Y. G. Chen,; L. Y. Wang, PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 2020, 30, 2002281.
[32]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[33]
T. T. Sun,; Y. L. Li,; T. T. Cui,; L. B. Xu,; Y. G. Wang,; W. X. Chen,; P. P. Zhang,; T. Y. Zheng,; X. Z. Fu,; S. L. Zhang, et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 8, 6206-6214.
[34]
J. Yang,; W. Li,; D. Wang,; Y. D. Li, Electronic metal-support interactions of single-atom and applications in electrocatalysis. Adv. Mater., in press, .
[35]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[36]
S. S. Nagarkar,; B. Joarder,; A. K. Chaudhari,; S. Mukherjee,; S. K. Ghosh, Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem., Int. Ed. 2013, 52, 2881-2885.
[37]
A. J. Lan,; K. H. Li,; H. H. Wu,; D. H. Olson,; T. J. Emge,; W. Ki,; M. C. Hong,; J. Li, A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew. Chem., Int. Ed. 2009, 48, 2334-2338.
[38]
J. He,; J. L. Xu,; J. C. Yin,; N. Li,; X. H. Bu, Recent advances in luminescent metal-organic frameworks for chemical sensors. Sci. China Mater. 2019, 62, 1655-1678.
[39]
V. Stavila,; A. A. Talin,; M. D. Allendorf, MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994-6010.
[40]
R. Haldar,; C. Wöll, Hierarchical assemblies of molecular frameworks— MOF-on-MOF epitaxial heterostructures. Nano Res., in press, .
[41]
B. Zhao,; X. Y. Chen,; P. Cheng,; D. Z. Liao,; S. P. Yan,; Z. H. Jiang, Coordination polymers containing 1D Channels as selective luminescent probes. J. Am. Chem. Soc. 2004, 126, 15394-15395.
[42]
X. Y. Xu,; X. Lian,; J. N. Hao,; C. Zhang,; B. Yan, A double-stimuli- responsive fluorescent center for monitoring of food spoilage based on dye covalently modified EuMOFs: From sensory hydrogels to logic devices. Adv. Mater. 2017, 29, 1702298.
[43]
A. Karmakar,; P. Samanta,; A. V. Desai,; S. K. Ghosh, Guest-responsive metal-organic frameworks as scaffolds for separation and sensing applications. Acc. Chem. Res. 2017, 50, 2457-2469.
[44]
B. Yan, Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 2017, 50, 2789-2798.
[45]
J. Heine,; K. Müller-Buschbaum, Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 9232-9242.
[46]
J. Zhang,; F. Liu,; J. L. Gan,; Y. J. Cui,; B. Li,; Y. Yang,; G. D. Qian, Metal-organic framework film for fluorescence turn-on H2S gas sensing and anti-counterfeiting patterns. Sci. China Mater. 2019, 62, 1445-1453.
[47]
Y. Wang,; P. Gawryszewska-Wilczynsk,; X. R. Zhang,; J. Yin,; Y. Q. Wen,; H. R. Li, Photovoltaic efficiency enhancement of polycrystalline silicon solar cells by a highly stable luminescent film. Sci. China Mater. 2020, 63, 544-551.
[48]
W. X. Guo,; W. W. Sun,; L. P. Lv,; S. F. Kong,; Y. Wang, Microwave- assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for li-ion storage. ACS Nano 2017, 11, 4198-4205.
[49]
Y. S. Li,; H. Bux,; A. Feldhoff,; G. L. Li,; W. S. Yang,; J. Caro, Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Adv. Mater. 2010, 22, 3322-3326.
[50]
G. Skorupskii,; M. Dincă, Electrical conductivity in a porous, cubic rare-earth catecholate. J. Am. Chem. Soc. 2020, 142, 6920-6924.
[51]
W. D. Li,; P. Ma,; F. F. Chen,; R. Xu,; Z. H. Cheng,; X. Yin,; Y. Lin,; L. Y. Wang, CoSe2/porous carbon shell composites as high-performance catalysts toward tri-iodide reduction in dye-sensitized solar cells. Inorg. Chem. Front. 2019, 6, 2550-2557.
[52]
C. L. Hao,; X. L. Wu,; M. Z. Sun,; H. Y. Zhang,; A. M. Yuan,; L. G. Xu,; C. L. Xu,; H. Kuang, Chiral core-shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 2019, 141, 19373-19378.
[53]
Y. C. Jeong,; J. W. Seo,; J. H. Kim,; S. Nam,; M. C. Shin,; Y. S. Cho,; J. S. Byeon,; C. R. Park,; S. J. Yang, Function-regeneration of non-porous hydrolyzed-MOF-derived materials. Nano Res. 2019, 12, 1921-1930.
[54]
R. Gautier,; X. Y. Li,; Z. G. Xia,; F. Massuyeau, Two-step design of a single-doped white phosphor with high color rendering. J. Am. Chem. Soc. 2017, 139, 1436-1439.
[55]
F. Chen,; Y. M. Wang,; W. W. Guo,; X. B. Yin, Color-tunable lanthanide metal-organic framework gels. Chem. Sci. 2019, 10, 1644-1650.
[56]
B. Q. Shao,; J. S. Huo,; H. P. You, Prevailing strategies to tune emission color of lanthanide-activated phosphors for WLED applications. Adv. Opt. Mater. 2019, 7, 1900319.
[57]
H. Yang,; J. Bright,; S. Kasani,; P. Zheng,; T. Musho,; B. L. Chen,; L. Huang,; N. Q. Wu, Metal-organic framework coated titanium dioxide nanorod array P-N heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643-650.
[58]
B. Chen,; Y. Yang,; F. Zapata,; G. Lin,; G. Qian,; E. B. Lobkovsky, Luminescent open metal sites within a metal-organic framework for sensing small molecules. Adv. Mater. 2007, 19, 1693-1696.
[59]
Y. J. Cai,; X. Y. Li,; K. B. Wu,; X. F. Yang, Electrochemical sensing performance of Eu-BTC and Er-BTC frameworks toward sunset yellow. Anal. Chim. Acta 2019, 1062, 78-86.
[60]
J. Cornil,; D. Beljonne,; J. P. Calbert,; J. L. Brédas, Interchain interactions in organic π-conjugated materials: Impact on electronic structure, optical response, and charge transport. Adv. Mater. 2001, 13, 1053-1067.
Nano Research
Pages 720-729
Cite this article:
Xu H, Yu W, Pan K, et al. Confinement and antenna effect for ultrasmall Y2O3:Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. Nano Research, 2021, 14(3): 720-729. https://doi.org/10.1007/s12274-020-3104-2
Topics:

885

Views

34

Crossref

0

Web of Science

32

Scopus

3

CSCD

Altmetrics

Received: 09 August 2020
Revised: 07 September 2020
Accepted: 08 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return