AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multilevel structured carbon film as cathode host for Li-S batteries with superhigh-areal-capacity

Bin HeWen-Cui LiZhi-Yuan ChenLei ShiYu ZhangJi-Li XiaAn-Hui Lu( )
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Show Author Information

Graphical Abstract

Abstract

The commercialization of lithium-sulfur (Li-S) battery could be accelerated by designing advanced sulfur cathode with high sulfur utilization and stable cycle life at a high sulfur loading. To allow the energy density of Li-S batteries comparable to that of commercial Li-ion batteries, the areal capacity of sulfur cathode should be above 4 mA·h·cm-2. In general, a high sulfur loading often causes rapid capacity fading by slowing electron/ion transport kinetics, catastrophic shuttle effect and even cracking the electrodes. To address this issue, herein, a multilevel structured carbon film is built by covering highly conductive CNTs and hollow carbon nanofiber together with carbon layer via chemical vapor deposition. The self-standing carbon film exhibits well-interweaved conductive network, hollow fibrous structure and abundant N, O co-doped active sites, which combine the merits of high electronic conductivity (1,200 S·m-1), high porosity and polar characteristic in one host. Benefiting from this attractive multilevel structure, the obtained sulfur cathode based on the carbon film host shows an ultra-high areal capacity of 8.9 mA·h·cm-2 at 0.2 C with outstanding cyclability over 60 cycles. This work shed light on designing advanced sulfur host for Li-S batteries with high areal capacity and high cycle stability, and might make a contribution to the commercialization of Li-S batteries.

Electronic Supplementary Material

Download File(s)
12274_2020_3102_MOESM1_ESM.pdf (2.7 MB)

References

[1]
C. Ye,; Y. Jiao,; H. Y. Jin,; A. D. Slattery,; K. Davey,; H. H. Wang,; S. Z. Qiao, 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16703-16707.
[2]
J. Qian,; F. J. Wang,; Y. Li,; S. Wang,; Y. Y. Zhao,; W. L. Li,; Y. Xing,; L. Deng,; Q. Sun,; L. Li, et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.
[3]
J. Kim,; A. Elabd,; S. Y. Chung,; A. Coskun,; J. W. Choi, Covalent triazine frameworks incorporating charged polypyrrole channels for high-performance lithium-sulfur batteries. Chem. Mater. 2020, 32, 4185-4193.
[4]
J. Zhang,; H. Huang,; J. Bae,; S. H. Chung,; W. K. Zhang,; A. Manthiram,; G. H. Yu, Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: Structure design and interfacial chemistry. Small Methods 2018, 2, 1700279.
[5]
H. Q. Wang,; W. C. Zhang,; J. Z. Xu,; Z. P. Guo, Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.
[6]
Y. X. Yin,; S. Xin,; Y. G. Guo,; L. J. Wan, Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186-13200.
[7]
B. Zhang,; C. Luo,; Y. Q. Deng,; Z. J. Huang,; G. M. Zhou,; W. Lv,; Y. B. He,; Y. Wan,; F. Y. Kang,; Q. H. Yang, Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater, 2020, 10, 2000091.
[8]
T. Chen,; Z. W. Zhang,; B. R. Cheng,; R. P. Chen,; Y. Hu,; L. B. Ma,; G. Y. Zhu,; J. Liu,; Z. Jin, Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710-12715.
[9]
B. He,; W. C. Li,; Y. Zhang,; X. F. Yu,; B. S. Zhang,; F. Li,; A. H. Lu, Paragenesis BN/CNTs hybrid as a monoclinic sulfur host for high rate and ultra-long life lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 24194-24200.
[10]
B. He,; W. C. Li,; C. Yang,; S. Q. Wang,; A. H. Lu, Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: An electrolysis approach. ACS Nano 2016, 10, 1633-1639.
[11]
Z. S. Wang,; J. D. Shen,; J. Liu,; X. J. Xu,; Z. B. Liu,; R. Z. Hu,; L. C. Yang,; Y. Z. Feng,; J. Liu,; Z. C. Shi, et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 2019, 31, 1902228.
[12]
Z. A. Ghazi,; X. He,; A. M. Khattak,; N. A. Khan,; B. Liang,; A. Iqbal,; J. X. Wang,; H. Sin,; L. S. Li,; Z. Y. Tang, MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.
[13]
Y. J. Li,; P. Zhou,; H. Li,; T. T. Gao,; L. Zhou,; Y. L. Zhang,; N. Xiao,; Z. Z. Xia,; L. Wang,; Q. H. Zhang, et al. A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods 2020, 4, 1900701.
[14]
F. Wu,; Y. S. Ye,; R. J. Chen,; J. Qian,; T. Zhao,; L. Li,; W. H. Li, Systematic effect for an ultralong cycle lithium-sulfur battery. Nano Lett. 2015, 15, 7431-7439.
[15]
J. Gao,; C. S. Sun,; L. Xu,; J. Chen,; C. Wang,; D. C. Guo,; H. Chen, Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode. J. Power Sources 2018, 382, 179-189.
[16]
X. Li,; D. H. Wang,; H. C. Wang,; H. F. Yan,; Z. L. Gong,; Y. Yang, Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl. Mater. Interfaces 2019, 11, 22745-22753.
[17]
J. Liu,; Q. Zhang,; Y. K. Sun, Recent progress of advanced binders for Li-S batteries. J. Power Sources 2018, 396, 19-32.
[18]
P. Han,; S. H. Chung,; C. H. Chang,; A. Manthiram, Bifunctional binder with nucleophilic lithium polysulfide immobilization ability for high-loading, high-thickness cathodes in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 17393-17399.
[19]
G. S. Jiang,; F. Xu,; S. H. Yang,; J. P. Wu,; B. Q. Wei,; H. Q. Wang, Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries. J. Power Sources 2018, 395, 77-84.
[20]
Q. Lu,; Y. J. Zhong,; W. Zhou,; K. M. Liao,; Z. P. Shao, Dodecylamine-induced synthesis of a nitrogen-doped carbon comb for advanced lithium-sulfur battery cathodes. Adv. Mater. Interfaces 2018, 5, 1701659.
[21]
B. Y. Hao,; H. Li,; W. Lv,; Y. B. Zhang,; S. Z. Niu,; Q. Qi,; S. J. Xiao,; J. Li,; F. Y. Kang,; Q. H. Yang, Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy 2019, 60, 305-311.
[22]
H. J. Peng,; J. Q. Huang,; X. B. Cheng,; Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.
[23]
R. P. Fang,; S. Y. Zhao,; P. X. Hou,; M. Cheng,; S. G. Wang,; H. M. Cheng,; C. Liu,; F. Li, 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries. Adv. Mater. 2016, 28, 3374-3382.
[24]
D. P. Lv,; J. M. Zheng,; Q. Y. Li,; X. Xie,; S. Ferrara,; Z. M. Nie,; L. B. Mehdi,; N. D. Browning,; J. G. Zhang,; G. L. Graff, et al. High energy density lithium-sulfur batteries: Challenges of thick sulfur cathodes. Adv. Energy Mater. 2015, 5, 1402290.
[25]
X. F. Yang,; Y. Q. Chen,; M. R. Wang,; H. Z. Zhang,; X. F. Li,; H. M. Zhang, Phase inversion: A universal method to create high-performance porous electrodes for nanoparticle-based energy storage devices. Adv. Funct. Mater. 2016, 26, 8427-8434.
[26]
N. Ding,; S. W. Chien,; T. S. A. Hor,; Z. L. Liu,; Y. Zong, Key parameters in design of lithium sulfur batteries. J. Power Sources 2014, 269, 111-116.
[27]
G. Ai,; Y. L. Dai,; W. F. Mao,; H. Zhao,; Y. B. Fu,; X. Y. Song,; Y. F. En,; V. S. Battaglia,; V. Srinivasan,; G. Liu, Biomimetic ant-nest electrode structures for high sulfur ratio lithium-sulfur batteries. Nano Lett. 2016, 16, 5365-5372.
[28]
X. W. Wu,; H. Xie,; Q. Deng,; H. X. Wang,; H. Sheng,; Y. X. Yin,; W. X. Zhou,; R. L. Li,; Y. G. Guo, Three-dimensional carbon nanotubes forest/carbon cloth as an efficient electrode for lithium-polysulfide batteries. ACS Appl. Mater. Interfaces 2017, 9, 1553-1561.
[29]
Z. Yuan,; H. J. Peng,; J. Q. Huang,; X. Y. Liu,; D. W. Wang,; X. B. Cheng,; Q. Zhang, Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014 24, 6105-6112.
[30]
L. B. Ma,; G. Y. Zhu,; W. J. Zhang,; P. Y. Zhao,; Y. Hu,; Y. R. Wang,; L. Wang,; R. P. Chen,; T. Chen,; Z. X. Tie, et al. Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. Nano Res. 2018, 11, 6436-6446.
[31]
L. B. Ma,; H. N. Lin,; W. J. Zhang,; P. Y. Zhao,; G. Y. Zhu,; Y. Hu,; R. P. Chen,; Z. X. Tie,; J. Liu,; Z. Jin, Nitrogen-doped carbon nanotube forests planted on cobalt nanoflowers as polysulfide mediator for ultralow self-discharge and high areal-capacity lithium-sulfur batteries. Nano Lett. 2018, 18, 7949-7954.
[32]
G. J. Hu,; C. Xu,; Z. H. Sun,; S. G. Wang,; H. M. Cheng,; F. Li,; W. C. Ren, 3D Graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603-1609.
[33]
Y. J. Li,; K. K. Fu,; C. J. Chen,; W. Luo,; T. T. Gao,; S. M. Xu,; J. Q. Dai,; G. Pastel,; Y. B. Wang,; B. Y. Liu, et al. Enabling high-areal-capacity lithium-sulfur batteries: designing anisotropic and low-tortuosity porous architectures. ACS Nano 2017, 11, 4801-4807.
[34]
B. Lan,; L. Yu,; T. Lin,; G. Cheng,; M. Sun,; F. Ye,; Q. F. Sun,; J. He, Multifunctional free-standing membrane from the self-assembly of ultralong MnO2 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 7458-7464.
[35]
Z. M. Cui,; C. X. Zu,; W. D. Zhou,; A. Manthiram,; J. B. Goodenough, Mesoporous titanium nitride -enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926-6931.
[36]
C. Lin,; L. B. Qu,; J. T. Li,; Z. Y. Cai,; H. Y. Liu,; P. He,; X. Xu,; L. Q. Mai, Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res. 2019, 12, 205-210.
[37]
Z. X. Hao,; R. Zeng,; L. X. Yuan,; Q. M. Bing,; J. Y. Liu,; J. W. Xiang,; Y. H. Huang, Perovskite La0.6Sr0.4CoO3-δ as a new polysulfide immobilizer for high-energy lithium-sulfur batteries. Nano Energy 2017, 40, 360-368.
[38]
Z. Li,; F. Zhang,; L. B. Tang,; Y. Y. Tao,; H. Chen,; X. M. Pu,; Q. J. Xu,; H. M. Liu,; Y. G. Wang,; Y. Y. Xia, High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator. Chem. Eng. J. 2020, 390, 124653.
[39]
Y. Hu,; W. Chen,; T. Y. Lei,; Y. Jiao,; H. B. Wang,; X. P. Wang,; G. F. Rao,; X. F. Wang,; B. Chen,; J. Xiong, Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy 2020, 68, 104373.
[40]
J. X. Song,; M. L. Gordin,; T. Xu,; S. R. Chen,; Z. X. Yu,; H. Sohn,; J. Lu,; Y. Ren,; Y. H. Duan,; D. H. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 54, 4325-4329.
[41]
Z. X. Liu,; J. Li,; J. W. Xiang,; S. Cheng,; H. Wu,; N. Zhang,; L. X. Yuan,; W. F. Zhang,; J. Xie,; Y. H. Huang, et al. Hierarchical nitrogen-doped porous graphene/reduced fluorographene/sulfur hybrids for high-performance lithium-sulfur batteries. Phys. Chem. Chem. Phys. 2017, 19, 2567-2573.
[42]
D. Chen,; R. Yang,; L. P. Chen,; Y. M. Zou,; B. Ren,; L. Li,; S. C. Li,; Y. L. Yan,; Y. H. Xu, One-pot fabrication of nitrogen and sulfur dual-doped graphene/sulfur cathode via microwave assisted method for long cycle-life lithium-sulfur batteries. J. Alloys Compd. 2018, 746, 116-124.
[43]
Q. Zhao,; Q. Z. Zhu,; J. W. Miao,; Z. R. X. Guan,; H. Liu,; R. J. Chen,; Y. B. An,; F. Wu,; B. Xu, Three dimensional carbon current collector promises small sulfur molecule cathode with high areal loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 10882-10889.
[44]
Q. Pang,; D. Kundu,; L. F. Nazar, A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz. 2016, 3, 130-136.
[45]
W. D. Zhou,; B. K. Guo,; H. C. Gao,; J. B. Goodenough, Low-cost higher loading of a sulfur cathode. Adv. Energy Mater. 2016, 6, 1502059.
[46]
X. Y. Zhu,; W. Zhao,; Y. Z. Song,; Q. C. Li,; F. Ding,; J. Y. Sun,; L. Zhang,; Z. F. Liu, In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800201.
[47]
X. Liang,; Y. Rangom,; C. Y. Kwok,; Q. Pang,; L. F. Nazar, Interwoven MXene Nanosheet/Carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.
[48]
Y. J. Li,; J. M. Fan,; J. H. Zhang,; J. F. Yang,; R. M. Yuan,; J. Chang,; M. S. Zheng,; Q. F. Dong, A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries. ACS Nano 2017, 11, 11417-11424.
[49]
L. B. Ma,; H. Yuan,; W. J. Zhang,; G. Y. Zhu,; Y. R. Wang,; Y. Hu,; P. Y. Zhao,; R. P. Chen,; T. Chen,; J. Liu, et al. Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium-sulfur batteries. Nano Lett. 2017, 17, 7839-7846.
[50]
M. P. Yu,; J. S. Ma,; M. Xie,; H. Q. Song,; F. Y. Tian,; S. S. Xu,; Y. Zhou,; B. Li,; D. Wu,; H. Qiu, et al. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602347.
[51]
M. W. Xiang,; L. Yang,; Y. F. Zheng,; J. Huang,; P. Jing,; H. Wu,; Y. Zhang,; H. Liu, A freestanding and flexible nitrogen-doped carbon foam/sulfur cathode composited with reduced graphene oxide for high sulfur loading lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 18020-18028.
[52]
Y. S. Ye,; F. Wu,; Y. T. Liu,; T. Zhao,; J. Qian,; Y. Xing,; W. L. Li,; J. Q. Huang,; L. Li,; Q. M. Huang, et al. Toward practical high-energy batteries: A modular-assembled oval-like carbon microstructure for thick sulfur electrodes. Adv. Mater. 2017, 29, 1700598.
[53]
X. Chen,; L. X. Yuan,; Z. X. Hao,; X. X. Liu,; J. W. Xiang,; Z. R. Zhang,; Y. H. Huang,; J. Xie, Free-standing Mn3O4@CNF/S paper cathodes with high sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 13406-13412.
[54]
Q. Pang,; L. F. Nazar, Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 2016, 10, 4111-4118.
Nano Research
Pages 1273-1279
Cite this article:
He B, Li W-C, Chen Z-Y, et al. Multilevel structured carbon film as cathode host for Li-S batteries with superhigh-areal-capacity. Nano Research, 2021, 14(5): 1273-1279. https://doi.org/10.1007/s12274-020-3102-4
Topics:

788

Views

20

Crossref

N/A

Web of Science

21

Scopus

6

CSCD

Altmetrics

Received: 04 August 2020
Revised: 07 September 2020
Accepted: 08 September 2020
Published: 29 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return