Journal Home > Volume 14 , Issue 3

Self-powered glucose biosensor (SPGB) is of great interest due to the advantages including single configuration, good stability and particularly no need of external power sources. Herein, a mediator-free SPGB with high sensitivity and good selectivity is constructed based on a hybrid enzymatic biofuel cell (EBFC) composed of a glucose oxidase/cobalt phthalocyanine/1-pyrenebutyric acid/ buckypaper (GOD/CoPc/PBA/BP) bioanode and a MnO2/PBA/BP capacitive cathode. The efficient electron transfer from GOD to electrodes is achieved successfully through the anode oxidation of hydrogen peroxide (H2O2), one nature product of glucose oxidation catalyzed by GOD, thus avoiding the potential drawbacks posed by the use of redox mediators. CoPc servers as an efficient catalyst to lower the anode potential required by the reaction of H2O2 to 0.17 V. The MnO2/PBA/BP capacitive cathode is utilized because it can not only provide a high discharge potential and adequate capacitance to match the bioanode well, but also exhibit no potential interference to the anodic reaction. The concentration of glucose can be detected simply by measuring the output of the SPGB and a wide linear detection range from 0.5 to 8 mM has been obtained with high sensitivities of 48.66 and 32.12 μA·cm-2·mM-1 with and without stirring, respectively. The recoveries of glucose in grape juice and human serum are in the range from 99.5% to 101.2% with the relative standard deviation (RSD) less than 8%, indicating the good promise of the SPGB in sensing glucose in real samples.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A mediator-free self-powered glucose biosensor based on a hybrid glucose/MnO2 enzymatic biofuel cell

Show Author's information Shuai Hao1,2He Zhang1,2Xiaoxuan Sun1,2Junfeng Zhai1( )Shaojun Dong1,2( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

Abstract

Self-powered glucose biosensor (SPGB) is of great interest due to the advantages including single configuration, good stability and particularly no need of external power sources. Herein, a mediator-free SPGB with high sensitivity and good selectivity is constructed based on a hybrid enzymatic biofuel cell (EBFC) composed of a glucose oxidase/cobalt phthalocyanine/1-pyrenebutyric acid/ buckypaper (GOD/CoPc/PBA/BP) bioanode and a MnO2/PBA/BP capacitive cathode. The efficient electron transfer from GOD to electrodes is achieved successfully through the anode oxidation of hydrogen peroxide (H2O2), one nature product of glucose oxidation catalyzed by GOD, thus avoiding the potential drawbacks posed by the use of redox mediators. CoPc servers as an efficient catalyst to lower the anode potential required by the reaction of H2O2 to 0.17 V. The MnO2/PBA/BP capacitive cathode is utilized because it can not only provide a high discharge potential and adequate capacitance to match the bioanode well, but also exhibit no potential interference to the anodic reaction. The concentration of glucose can be detected simply by measuring the output of the SPGB and a wide linear detection range from 0.5 to 8 mM has been obtained with high sensitivities of 48.66 and 32.12 μA·cm-2·mM-1 with and without stirring, respectively. The recoveries of glucose in grape juice and human serum are in the range from 99.5% to 101.2% with the relative standard deviation (RSD) less than 8%, indicating the good promise of the SPGB in sensing glucose in real samples.

Keywords: hydrogen peroxide, self-powered glucose biosensor, glucose oxidase, mediator-free, capacitive cathode

References(56)

[1]
M. Boronat,; P. Saavedra,; L. López-Ríos,; M. Riaño,; A. M. Wägner,; F. J. Nóvoa, Differences in cardiovascular risk profile of diabetic subjects discordantly classified by diagnostic criteria based on glycated hemoglobin and oral glucose tolerance test. Diabetes Care 2010, 33, 2671-2673.
[2]
V. Poitout,; D. Hagman,; R. Stein,; I. Artner,; R. P. Robertson,; J. S. Harmon, Regulation of the insulin gene by glucose and fatty acids. J. Nutr. 2006, 136, 873-876.
[3]
H. Al-Sagur,; K. S. Sundaram,; E. N. Kaya,; M. Durmuş,; T. V. Basova,; A. Hassan, Amperometric glucose biosensing performance of a novel graphene nanoplatelets-iron phthalocyanine incorporated conducting hydrogel. Biosens. Bioelectron. 2019, 139, 111323.
[4]
L. Guadarrama-Fernández,; M. Novell,; P. Blondeau,; F. J. Andrade, A disposable, simple, fast and low-cost paper-based biosensor and its application to the determination of glucose in commercial orange juices. Food Chem. 2018, 265, 64-69.
[5]
Y. Liu,; D. T. Tu,; W. Zheng,; L. Y. Lu,; W. W. You,; S. Y. Zhou,; P. Huang,; R. F. Li,; X. Y. Chen, A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res. 2018, 11, 3164-3174.
[6]
Y. L. Li,; J. W. Wang,; N. R. Sun,; C. H. Deng, Glucose-6-phosphate- functionalized magnetic microsphere as novel hydrophilic probe for specific capture of N-linked glycopeptides. Anal. Chem. 2017, 89, 11151-11158.
[7]
Q. Lei,; Y. Wang,; W. X. Dong,; H. T. Sun,; J. X. Lv,; H. Li, Self-powered electrochromic sensing for visual determination of PSA in serum using PB as an indicator. J. Electroanal. Chem. 2019, 839, 108-115.
[8]
H. Ohnuki,; T. Wako,; B. Mecheri,; H. Y. Wu,; D. Tsuya,; H. Endo, Self-powered hydrogen peroxide sensor and its application as a biosensor. Jpn. J. Appl. Phys. 2019, 58, SBBG16.
[9]
M. J. Cho,; S. Y. Park, Carbon-dot-based ratiometric fluorescence glucose biosensor. Sensor. Actuat. B: Chem. 2019, 282, 719-729.
[10]
E. Katz,; A. F. Bückmann,; I. Willner, Self-powered enzyme-based biosensors. J. Am. Chem. Soc. 2001, 123, 10752-10753.
[11]
M. Zhou,; J. Wang, Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review. Electroanalysis 2012, 24, 197-209.
[12]
H. Y. Guan,; T. Y. Zhong,; H. X. He,; T. M. Zhao,; L. L. Xing,; Y. Zhang,; X. Y. Xue, A self-powered wearable sweat-evaporation- biosensing analyzer for building sports big data. Nano Energy 2019, 59, 754-761.
[13]
S. Hao,; X. X. Sun,; H. Zhang,; J. F. Zhai,; S. J. Dong, Recent development of biofuel cell based self-powered biosensors. J. Mater. Chem. B 2020, 8, 3393-3407.
[14]
S. B. Bankar,; M. V. Bule,; R. S. Singhal,; L. Ananthanarayan, Glucose oxidase — an overview. Biotechnol. Adv. 2009, 27, 489-501.
[15]
R. Wilson,; A. P. F. Turner, Glucose oxidase: An ideal enzyme. Biosens. Bioelectron. 1992, 7, 165-185.
[16]
J. H. Yu,; S. Q. Liu,; H. X. Ju, Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane. Biosens. Bioelectron. 2003, 19, 401-409.
[17]
S. C. Barton,; J. Gallaway,; P. Atanassov, Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 2004, 104, 4867-4886.
[18]
P. Kavanagh,; S. Boland,; P. Jenkins,; D. Leech, Performance of a glucose/O2 enzymatic biofuel cell containing a mediated Melanocarpus albomyces laccase cathode in a physiological buffer. Fuel Cells 2009, 9, 79-84.
[19]
S. Samavat,; J. Lloyd,; L. O'Dea,; W. Zhang,; E. Preedy,; S. Luzio,; K. S. Teng, Uniform sensing layer of immiscible enzyme-mediator compounds developed via a spray aerosol mixing technique towards low cost minimally invasive microneedle continuous glucose monitoring devices. Biosens. Bioelectron. 2018, 118, 224-230.
[20]
Y. W. Yuan,; Y. S. Wang,; H. Wang,; S. F. Hou, Gold nanoparticles decorated on single layer graphene applied for electrochemical ultrasensitive glucose biosensor. J. Electroanal. Chem. 2019, 855, 113495.
[21]
J. T. Holland,; C. Lau,; S. Brozik,; P. Atanassov,; S. Banta, Engineering of glucose oxidase for direct electron transfer via site- specific gold nanoparticle conjugation. J. Am. Chem. Soc. 2011, 133, 19262-19265.
[22]
X. Y. Pang,; D. M. He,; S. L. Luo,; Q. Y. Cai, An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sensor. Actuat. B: Chem. 2009, 137, 134-138.
[23]
H. Tang,; J. H. Chen,; S. Z. Yao,; L. H. Nie,; G. H. Deng,; Y. F. Kuang, Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal. Biochem. 2004, 331, 89-97.
[24]
L. Deng,; L. Shang,; Y. Z. Wang,; T. Wang,; H. J. Chen,; S. J. Dong, Multilayer structured carbon nanotubes/poly-L-lysine/laccase composite cathode for glucose/O2 biofuel cell. Electrochem. Commun. 2008, 10, 1012-1015.
[25]
F. Gao,; Y. M. Yan,; L. Su,; L. Wang,; L. Q. Mao, An enzymatic glucose/O2 biofuel cell: Preparation, characterization and performance in serum. Electrochem. Commun. 2007, 9, 989-996.
[26]
A. Salimi,; R. Hallaj,; S. Soltanian,; H. Mamkhezri, Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal. Chim. Acta 2007, 594, 24-31.
[27]
X. J. Wang,; M. Falk,; R. Ortiz,; H. Matsumura,; J. Bobacka,; R. Ludwig,; M. Bergelin,; L. Gorton,; S. Shleev, Mediatorless sugar/ oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens. Bioelectron. 2012, 31, 219-225.
[28]
S. Y. Zhu,; L. S. Fan,; X. Q. Liu,; L. H. Shi,; H. J. Li,; S. Han,; G. B. Xu, Determination of concentrated hydrogen peroxide at single- walled carbon nanohorn paste electrode. Electrochem. Commun. 2008, 10, 695-698.
[29]
W. Guo,; C. Yu,; S. F. Li,; Z. Wang,; J. H. Yu,; H. W. Huang,; J. S. Qiu, Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives. Nano Energy 2019, 57, 459-472.
[30]
Y. Yu,; Y. J. Han,; B. H. Lou,; L. L. Zhang,; L. Han,; S. J. Dong, A miniature origami biofuel cell based on a consumed cathode. Chem. Commun. 2016, 52, 13499-13502.
[31]
H. H. Wang,; Y. Bu,; W. L. Dai,; K. Li,; H. D. Wang,; X. Zuo, Well-dispersed cobalt phthalocyanine nanorods on graphene for the electrochemical detection of hydrogen peroxide and glucose sensing. Sensor. Actuat. B: Chem. 2015, 216, 298-306.
[32]
Y. D. Wang,; P. P. Joshi,; K. L. Hobbs,; M. B. Johnson,; D. W. Schmidtke, Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers. Langmuir 2006, 22, 9776-9783.
[33]
H. Zhang,; Y. Yu,; L. L. Zhang,; S. J. Dong, Fuel-free bio- photoelectrochemical cells based on a water/oxygen circulation system with a Ni:FeOOH/BiVO4 photoanode. Angew. Chem., Int. Ed. 2018, 57, 1547-1551.
[34]
X. J. Du,; D. Jiang,; Q. Liu,; N. Hao,; K. Wang, Ingenious dual- photoelectrode internal-driven self-powered sensing platform for the power generation and simultaneous microcystin monitoring based on the membrane/mediator-free photofuel cell. Anal. Chem. 2019, 91, 1728-1732.
[35]
Y. H. Liu,; J. L. Xu,; X. Gao,; Y. L. Sun,; J. J. Lv,; S. Shen,; L. S. Chen,; S. D. Wang, Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors. Energy Environ. Sci. 2017, 10, 2534-2543.
[36]
A. J. Gross,; M. Holzinger,; S. Cosnier, Buckypaper bioelectrodes: Emerging materials for implantable and wearable biofuel cells. Energy Environ. Sci. 2018, 11, 1670-1687.
[37]
W. D. He,; C. G. Wang,; F. W. Zhuge,; X. L. Deng,; X. J. Xu,; T. Y. Zhai, Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 2017, 35, 242-250.
[38]
J. Y. Zhou,; H. Zhao,; X. M. Mu,; J. Y. Chen,; P. Zhang,; Y. L. Wang,; Y. M. He,; Z. X. Zhang,; X. J. Pan,; E. Q. Xie, Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors. Nanoscale 2015, 7, 14697-14706.
[39]
Z. H. Liu,; X. C. Tian,; X. Xu,; L. He,; M. Y. Yan,; C. H. Han,; Y. Li,; W. Yang,; L. Q. Mai, Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high- performance asymmetric micro-supercapacitors. Nano Res. 2017, 10, 2471-2481.
[40]
Z. Y. Ma,; Y. Sun,; J. W. Xie,; P. P. Li,; Q. J. Lu,; M. L. Liu,; P. Yin,; H. T. Li,; Y. Y. Zhang,; S. Z. Yao, Facile preparation of MnO2 quantum dots with enhanced fluorescence via microenvironment engineering with the assistance of some reductive biomolecules. ACS Appl. Mater. Interfaces 2020, 12, 15919-15927.
[41]
I. Jeerapan,; J. R. Sempionatto,; J. M. You,; J. Wang, Enzymatic glucose/oxygen biofuel cells: Use of oxygen-rich cathodes for operation under severe oxygen-deficit conditions. Biosens. Bioelectron. 2018, 122, 284-289.
[42]
X. X. Sun,; H. Zhang,; S. Hao,; J. F. Zhai,; S. J. Dong, A self- powered biosensor with a flake electrochromic display for electrochemical and colorimetric formaldehyde detection. ACS Sens. 2019, 4, 2631-2637.
[43]
W. Y. Ko,; Y. C. Liu,; J. Y. Lai,; C. C. Chung,; K. J. Lin, Vertically standing MnO2 nanowalls grown on AgCNT-modified carbon fibers for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 669-678.
[44]
H. Al-Sagur,; K. S. Sundaram,; E. N. Kaya,; M. Durmus,; T. V. Basova,; A. Hassan, Amperometric glucose biosensing performance of a novel graphene nanoplatelets-iron phthalocyanine incorporated conducting hydrogel. Biosens. Bioelectron. 2019, 139, 111323.
[45]
F. Y. Kong,; S. X. Gu,; W. W. Li,; T. T. Chen,; Q. Xu,; W. Wang, A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosens. Bioelectron. 2014, 56, 77-82.
[46]
Y. Q. Zhang,; Y. J. Fan,; L. Cheng,; L. L. Fan,; Z. Y. Wang,; J. P. Zhong,; L. N. Wu,; X. C. Shen,; Z. J. Shi, A novel glucose biosensor based on the immobilization of glucose oxidase on layer-by-layer assembly film of copper phthalocyanine functionalized graphene. Electrochim. Acta 2013, 104, 178-184.
[47]
H. Al-Sagur,; S. Komathi,; M. A. Khan,; A. G. Gurek,; A. Hassan, A novel glucose sensor using lutetium phthalocyanine as redox mediator in reduced graphene oxide conducting polymer multifunctional hydrogel. Biosens. Bioelectron. 2017, 92, 638-645.
[48]
H. F. Cui,; K. Zhang,; Y. F. Zhang,; Y. L. Sun,; J. Wang,; W. D. Zhang,; J. H. T. Luong, Immobilization of glucose oxidase into a nanoporous TiO2 film layered on metallophthalocyanine modified vertically- aligned carbon nanotubes for efficient direct electron transfer. Biosens. Bioelectron. 2013, 46, 113-118.
[49]
D. W. Chu,; F. B. Li,; X. M. Song,; H. Y. Ma,; L. C. Tan,; H. J. Pang,; X. M. Wang,; D. X. Guo,; B. X. Xiao, A novel dual-tasking hollow cube NiFe2O4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor. J. Colloid Interface Sci. 2020, 568, 130-138.
[50]
Y. Dilmac,; M. Guler, Fabrication of non-enzymatic glucose sensor dependent upon Au nanoparticles deposited on carboxylated graphene oxide. J. Electroanal. Chem. 2020, 864: 114091.
[51]
B. Çakıroğlu,; M. Özacar, A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co3O4-CNT hybrid on TiO2. Biosens. Bioelectron. 2018, 119, 34-41.
[52]
S. Selvarajan,; N. R. Alluri,; A. Chandrasekhar,; S. J. Kim, BaTiO3 nanoparticles as biomaterial film for self-powered glucose sensor application. Sensor. Actuat. B: Chem. 2016, 234, 395-403.
[53]
Y. F. Zhu,; X. Y. Qiu,; S. L. Zhao,; J. Guo,; X. F. Zhang,; W. S. Zhao,; Y. N. Shi,; Z. Y. Tang, Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928-1932.
[54]
X. F. Zhang,; L. Chang,; Z. J. Yang,; Y. N. Shi,; C. Long,; J. Y. Han,; B. H. Zhang,; X. Y. Qiu,; G. D. Li,; Z. Y. Tang, Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437-440.
[55]
C. Sun,; L. Chang,; K. Hou,; S. Q. Liu,; Z. Y. Tang, Encapsulation of live cells by metal-organic frameworks for viability protection. Sci. China Mater. 2019, 62, 885-891.
[56]
X. Li,; D. W. Li,; Y. N. Zhang,; P. F. Lv,; Q. Feng,; Q. F. Wei, Encapsulation of enzyme by metal-organic framework for single- enzymatic biofuel cell-based self-powered biosensor. Nano Energy 2020, 68, 104308.
File
12274_2020_3101_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 July 2020
Revised: 07 September 2020
Accepted: 08 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 21721003 and 21675151) and the Ministry of Science and Technology of China (no. 2016YFA0203203).

Return