Journal Home > Volume 14 , Issue 3

High conductivity two-dimensional (2D) materials have been proved to be potential electrode materials for flexible supercapacitors because of its outstanding chemical and physical properties. However, electrodes based on 2D materials always suffer from limited electrolyte-accessible surface due to the restacking of the 2D sheets, hindering the full utilization of their surface area. In this regard, an electrolyte-mediated method is used to integrate dense structure reduced graphene oxide/MXene (RGM)-electrolyte composite films. In such composite films, reduced graphene oxide (RGO) and MXene sheets are controllable assembly in compact layered structure with electrolyte filled between the layers. The electrolyte layer between RGO and MXene sheets forms continuous ion transport channels in the composite films. Therefore, the RGM-electrolyte composite films can be used directly as self-supporting electrodes for supercapacitors without additional conductive agents and binders. As a result, the composite films demonstrate enhanced volumetric specific capacity, improved volumetric energy density and higher power density compared with both pure RGO electrode and porous composite electrode prepared by traditional methods. Specifically, when the mass ratio of MXene is 30%, the electrode delivers a volumetric specific capacity of 454.9 F·cm−3 with a high energy density of 39.4 Wh·L−1. More importantly, supercapacitors based on the composite films exhibit good flexibility electrochemical performance. The investigation provides a new approach to synthesize dense structure films based on 2D materials for application in high volumetric capacitance flexible supercapacitors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors

Show Author's information Min Zhang1Jun Cao2,4( )Yi Wang2Jia Song3Tianci Jiang2Yanyu Zhang2Weimeng Si2Xiaowei Li2Bo Meng1( )Guangwu Wen2
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300071, China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300072, China

Abstract

High conductivity two-dimensional (2D) materials have been proved to be potential electrode materials for flexible supercapacitors because of its outstanding chemical and physical properties. However, electrodes based on 2D materials always suffer from limited electrolyte-accessible surface due to the restacking of the 2D sheets, hindering the full utilization of their surface area. In this regard, an electrolyte-mediated method is used to integrate dense structure reduced graphene oxide/MXene (RGM)-electrolyte composite films. In such composite films, reduced graphene oxide (RGO) and MXene sheets are controllable assembly in compact layered structure with electrolyte filled between the layers. The electrolyte layer between RGO and MXene sheets forms continuous ion transport channels in the composite films. Therefore, the RGM-electrolyte composite films can be used directly as self-supporting electrodes for supercapacitors without additional conductive agents and binders. As a result, the composite films demonstrate enhanced volumetric specific capacity, improved volumetric energy density and higher power density compared with both pure RGO electrode and porous composite electrode prepared by traditional methods. Specifically, when the mass ratio of MXene is 30%, the electrode delivers a volumetric specific capacity of 454.9 F·cm−3 with a high energy density of 39.4 Wh·L−1. More importantly, supercapacitors based on the composite films exhibit good flexibility electrochemical performance. The investigation provides a new approach to synthesize dense structure films based on 2D materials for application in high volumetric capacitance flexible supercapacitors.

Keywords: high energy density, electrolyte-mediated, dense structure, continuous ion transport channels, composite film, flexible supercapacitors

References(43)

[1]
L. C. Zhang,; P. L. Zhu,; F. R. Zhou,; W. J. Zeng,; H. B. Su,; G. Li,; J. H. Gao,; R. Sun,; C. P. Wong, Flexible asymmetrical solid-state supercapacitors based on laboratory filter paper. ACS Nano 2016, 10, 1273-1282.
[2]
H. Y. Li,; Y. Hou,; F. X. Wang,; M. R. Lohe,; X. D. Zhuang,; L. Niu,; X. L. Feng, Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.
[3]
X. Y. Wang,; F. Wan,; L. L. Zhang,; Z. F. Zhao,; Z. Q. Niu,; J. Chen, Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors. Adv. Funct. Mater. 2018, 28, 1707247.
[4]
S. Zhu,; J. F. Ni,; Y. Li, Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825-1841.
[5]
H. Yuan,; G. Wang,; Y. X. Zhao,; Y. Liu,; Y. Wu,; Y. G. Zhang, A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686-1692.
[6]
Q. R. Wang,; X. Y. Wang,; F. Wan,; K. N. Chen,; Z. Q. Niu,; J. Chen, An all-freeze-casting strategy to design typographical supercapacitors with integrated architectures. Small 2018, 14, 1800280.
[7]
J. W. Han,; H. Li,; D. B. Kong,; C. Zhang,; Y. Tao,; H. Li,; Q. H. Yang,; L. Q. Chen, Realizing high volumetric lithium storage by compact and mechanically stable anode designs. ACS Energy Lett. 2020, 5, 1986-1995.
[8]
T. Xu,; D. Z. Yang,; Z. J. Fan,; X. F. Li,; Y. X. Liu,; C. Guo,; M. Zhang,; Z. Z. Yu, Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon 2019, 152, 134-143.
[9]
S. Zhao,; H. B. Zhang,; J. Q. Luo,; Q. W. Wang,; B. Xu,; S. Hong,; Z. Z. Yu, Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193-11202.
[10]
Y. Zhou,; Y. L. Li,; H. M. Chen,; L. Han, Rational synthesis of Cu7S4/CoS2 hybrid nanorods arrays grown on Cu foam from metal-organic framework templates for high-performance supercapacitors. J. Alloys Compd. 2019, 807, 151680.
[11]
K. J. Zhu,; G. X. Zhu,; J. Wang,; J. X. Zhu,; G. Z. Sun,; Y. Zhang,; P. Li,; Y. F. Zhu,; W. J. Luo,; Z. G. Zou, et al. Direct storage of holes in ultrathin Ni(OH)2 on Fe2O3 photoelectrodes for integrated solar charging battery-type supercapacitors. J. Mater. Chem. A 2018, 6, 21360-21367.
[12]
M. Saraf,; K. Natarajan,; S. M. Mobin, Emerging robust heterostructure of MoS2-rGO for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 16588-16595.
[13]
Z. Ling,; C. E. Ren,; M. Q. Zhao,; J. Yang,; J. M. Giammarco,; J. S. Qiu,; M. W. Barsoum,; Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676-16681.
[14]
M. Naguib,; V. N. Mochalin,; M. W. Barsoum,; Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992-1005.
[15]
Z. M. Sun, Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 2011, 56, 143-166.
[16]
M. Naguib,; M. Kurtoglu,; V. Presser,; J. Lu,; J. J. Niu,; M. Heon,; L. Hultman,; Y. Gogotsi,; M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
[17]
P. Eklund,; M. Beckers,; U. Jansson,; H. Högberg,; L. Hultman, The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films 2010, 518, 1851-1878.
[18]
Y. M. Wang,; X. Wang,; X. L. Li,; Y. Bai,; H. H. Xiao,; Y. Liu,; R. Liu,; G. H. Yuan, Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 2019, 29, 1900326.
[19]
P. Zhang,; Q. Z. Zhu,; R. A. Soomro,; S. Y. He,; N. Sun,; N. Qiao,; B. Xu, In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater., in press, .
[20]
B. M. Jun,; S. Kim,; J. Heo,; C. M. Park,; N. Her,; M. Jang,; Y. Huang,; J. Han,; Y. Yoon, Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471-487.
[21]
Q. Wang,; S. L. Wang,; X. H. Guo,; L. M. Ruan,; N. Wei,; Y. Ma,; J. Y. Li,; M. Wang,; W. Q. Li,; W. Zeng, MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electron. Mater. 2019, 5, 1900537.
[22]
A. Levitt,; J. Z. Zhang,; G. Dion,; Y. Gogotsi,; J. M. Razal, MXene- based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater., in press, .
[23]
M. Q. Zhao,; C. E. Ren,; Z. Ling,; M. R. Lukatskaya,; C. F.. Zhang,; K. L. Van Aken,; M. W. Barsoum,; Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 2015, 27, 339-345.
[24]
L. Q. Qin,; Q. Z. Tao,; X. J. Liu,; M. Fahlman,; J. Halim,; P. O. Å. Persson,; J. Rosen,; F. L. Zhang, Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy 2019, 60, 734-742.
[25]
Y. Wang,; H. Dou,; J. Wang,; B. Ding,; Y. L. Xu,; Z. Chang,; X. D. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 2016, 327, 221-228.
[26]
J. F. Zhu,; Y. Tang,; C. H. Yang,; F. Wang,; M. J. Cao, Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 2016, 163, A785-A791.
[27]
Q. Jiang,; N. Kurra,; M. Alhabeb,; Y. Gogotsi,; H. N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.
[28]
Z. Y. Wang,; S. Qin,; S. Seyedin,; J. Z. Zhang,; J. T. Wang,; A. Levitt,; N. Li,; C. Haines,; R. Ovalle-Robles,; W. W. Lei, et al. High- performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 2018, 14, 1802225.
[29]
D. Y. Zhang,; Y. H. Zhang,; Y. S. Luo,; Y. Zhang,; X. W. Li,; X. L. Yu,; H. Ding,; P. K. Chu,; L. Sun, High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel. Nano Res. 2018, 11, 1651-1663.
[30]
Z. Q. Niu,; J. Chen,; H. H. Hng,; J. Ma,; X. D. Chen, A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144-4150.
[31]
J. Yan,; C. E. Ren,; K. Maleski,; C. B. Hatter,; B. Anasori,; P. Urbankowski,; A. Sarycheva,; Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.
[32]
J. Cao,; C. Chen,; K. N. Chen,; Q. Q. Lu,; Q. R. Wang,; P. F. Zhou,; D. B. Liu,; L. Song,; Z. Q. Niu,; J. Chen, High-strength graphene composite films by molecular level couplings for flexible supercapacitors with high volumetric capacitance. J. Mater. Chem. A 2017, 5, 15008-15016.
[33]
M. M. Hu,; R. F. Cheng,; Z. J. Li,; T. Hu,; H. Zhang,; C. Shi,; J. X. Yang,; C. Cui,; C. Zhang,; H. L. Wang, et al. Interlayer engineering of Ti3C2Tx MXenes towards high capacitance supercapacitors. Nanoscale 2020, 12, 763-771.
[34]
S. K. Xu,; G. D. Wei,; J. Z. Li,; W. Han,; Y. Gogotsi, Flexible MXene-graphene electrodes with high volumetric capacitance for integrated Co-cathode energy conversion/storage devices. J. Mater. Chem. A 2017, 5, 17442-17451.
[35]
Z. Wang,; Y. Y. Chen,; M. Y. Yao,; J. Dong,; Q. H. Zhang,; L. L. Zhang,; X. Zhao, Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance. J. Power Sources 2020, 448, 227398.
[36]
T. Z. Zhou,; C. Wu,; Y. L. Wang,; A. P. Tomsia,; M. Z. Li,; E. Saiz,; S. L. Fang,; R. H. Baughman,; L. Jiang,; Q. F. Cheng, Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.
[37]
X. W. Yang,; C. Cheng,; Y. F. Wang; L. Qiu; D. Li Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534-537.
[38]
Z. M. Fan,; Z. J. Cheng,; J. Y. Feng,; Z. M. Xie,; Y. Y. Liu,; Y. S. Wang, Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors. J. Mater. Chem. A 2017, 5, 16689-16701.
[39]
Z. M. Fan,; J. P. Zhu,; X. H. Sun,; Z. J. Cheng,; Y. Y. Liu,; Y. S. Wang, High density of free-standing holey graphene/PPy films for superior volumetric capacitance of supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 21763-21772.
[40]
M. Moussa,; Z. H. Zhao,; M. F. El-Kady,; H. K. Liu,; A. Michelmore,; N. Kawashima,; P. Majewski,; J. Ma, Free-standing composite hydrogel films for superior volumetric capacitance. J. Mater. Chem. A 2015, 3, 15668-15674.
[41]
J. Yan,; Q. Wang,; C. P. Lin,; T. Wei,; Z. J. Fan, Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 2014, 4, 1400500.
[42]
X. L. Yu,; J. M. Lu,; C. Z. Zhan,; R. T. Lv,; Q. H. Liang,; Z. H. Huang,; W. C. Shen,; F. Y. Kang, Synthesis of activated carbon nanospheres with hierarchical porous structure for high volumetric performance supercapacitors. Electrochim. Acta 2015, 182, 908-916.
[43]
K. Zhu,; Y. M. Jin,; F. Du,; S. Gao,; Z. M. Gao,; X. Meng,; G. Chen,; Y. J. Wei,; Y. Gao, Synthesis of Ti2CTx MXene as electrode materials for symmetric supercapacitor with capable volumetric capacitance. J. Energy Chem. 2019, 31, 11-18.
File
12274_2020_3100_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 August 2020
Revised: 07 September 2020
Accepted: 07 September 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Nos. ZR2018BB038 and ZR2019BEM041) and the National Natural Science Foundation of China (Nos. 21805171, 51802178 and 51804189).

Return