Journal Home > Volume 14 , Issue 4

Photocatalysis has attracted intense attention due to its potential to solve the energy resource problem and environmental issues. The single metal atom decorated photocatalysts as a rising star become more and more popular because of the unique advantages of superior catalytic activities and ultrahigh atom utilization efficiency. The key function of single metal atom catalysts in photocatalytic reactions is boosting surface redox reactions by utilizing photogenerated charges, and has been verified by various spectroscopic and microscopic techniques. Nevertheless, the activities of the single metal atoms highly depend on the binding environment in the host photocatalyst that affect the adsorption and activation of reactants as well as the reaction energy barrier. Herein, this mini review summarizes recent progress on single metal atom decorated photocatalysts, and discusses the roles of the single metal atom catalysts in different types of host photocatalysts including organic, carbon-based and inorganic materials. The remaining challenges and future perspectives on the stability and activities of single atom catalysts in photocatalytic processes are elaborated in the end. We believe that this mini review will provide valuable overview on synthetic methods of different single atom photocatalysts for researchers towards future development of highly efficient photocatalysts.


menu
Abstract
Full text
Outline
About this article

Single metal atom decorated photocatalysts: Progress and challenges

Show Author's information Lei ZengCan Xue( )
School of materials science and engineering, Nanyang Technological University, 50 Nanyang avenue, Singapore 639798, Singapore

Abstract

Photocatalysis has attracted intense attention due to its potential to solve the energy resource problem and environmental issues. The single metal atom decorated photocatalysts as a rising star become more and more popular because of the unique advantages of superior catalytic activities and ultrahigh atom utilization efficiency. The key function of single metal atom catalysts in photocatalytic reactions is boosting surface redox reactions by utilizing photogenerated charges, and has been verified by various spectroscopic and microscopic techniques. Nevertheless, the activities of the single metal atoms highly depend on the binding environment in the host photocatalyst that affect the adsorption and activation of reactants as well as the reaction energy barrier. Herein, this mini review summarizes recent progress on single metal atom decorated photocatalysts, and discusses the roles of the single metal atom catalysts in different types of host photocatalysts including organic, carbon-based and inorganic materials. The remaining challenges and future perspectives on the stability and activities of single atom catalysts in photocatalytic processes are elaborated in the end. We believe that this mini review will provide valuable overview on synthetic methods of different single atom photocatalysts for researchers towards future development of highly efficient photocatalysts.

Keywords: photocatalysis, hydrogen generation, CO2 reduction, artificial photosynthesis, solar fuels, solar energy conversion

References(93)

[1]
Q. Guo,; C. Y. Zhou,; Z. B. Ma,; X. M. Yang, Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.
[2]
B. T. Qiao,; A. Q. Wang,; X. F. Yang,; L. F. Allard,; Z. Jiang,; Y. T. Cui,; J. Y. Liu,; J. Li,; T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[3]
S. P. Ding,; M. J. Hülsey,; J. Pérez-Ramírez,; N. Yan, Transforming energy with single-atom catalysts. Joule 2019, 3, 2897-2929.
[4]
Z. W. Chen,; L. X. Chen,; C. C. Yang,; Q. Jiang, Atomic (single, double, and triple atoms) catalysis: Frontiers, opportunities, and challenges. J. Mater. Chem. A 2019, 7, 3492-3515.
[5]
Y. Z. Zhang,; B. Q. Xia,; J. G. Ran,; K. Davey,; S. Z. Qiao. Atomic- level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 1903879.
[6]
W. H. Lai,; Z. C. Miao,; Y. X. Wang,; J. Z. Wang,; S. L. Chou, Atomic-local environments of single-atom catalysts: Synthesis, electronic structure, and activity. Adv. Energy Mater. 2019, 9, 1900722.
[7]
S. Sultan,; J. N. Tiwari,; A. N. Singh,; S. Zhumagali,; M. R. Ha,; C. W. Myung,; P. Thangavel,; K. S. Kim, Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.
[8]
L. C. Liu,; A. Corma, Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
[9]
T. T. Wang,; Q. D. Zhao,; Y. Y. Fu,; C. J. Lei,; B. Yang,; Z. J. Li,; L. C. Lei,; G. Wu,; Y. Hou, Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 2019, 3, 1900210.
[10]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[11]
N. Q. Zhang,; C. L. Ye,; H. Yan,; L. C. Li,; H. He,; D. S. Wang,; Y. D. Li, Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.
[12]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[13]
T. T. Sun,; Y. L. Li,; T. T. Cui,; L. B. Xu,; Y. G. Wang,; W. X. Chen,; P. P. Zhang,; T. X. Zheng,; X. Z. Fu,; Z. D. Zhang, et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206-6214.
[14]
J. Zhang,; C. Y. Zheng,; M. L. Zhang,; Y. J. Qiu,; Q. Xu,; W. C. Cheong,; W. X. Chen,; L. R. Zheng,; L. Gu,; Z. P. Hu, et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082-3087.
[15]
Y. Z. Zhu,; J. Sokolowski,; X. C. Song,; Y. H. He,; Y. Mei,; G. Wu, Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 2020, 10, 1902844.
[16]
B. Wang,; H. R. Cai,; S. H. Shen, Single metal atom photocatalysis. Small Methods 2019, 3, 1800447.
[17]
C. Gao,; J. Low,; R. Long,; T. T. Kong,; J. F. Zhu,; Y. J. Xiong, Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev., in press, .
[18]
J. W. Fu,; S. D. Wang,; Z. H. Wang,; K. Liu,; H. J. W. Li,; H. Liu,; J. H. Hu,; X. W. Xu,; H. M. Li,; M. Liu, Graphitic carbon nitride based single-atom photocatalysts. Front. Phys. 2020, 15, 33201.
[19]
M. Shen,; L. X. Zhang,; J. L. Shi, Converting CO2 into fuels by graphitic carbon nitride-based photocatalysts. Nanotechnology 2018, 29, 412001.
[20]
Y. O. Wang,; A. Vogel,; M. Sachs,; R. S. Sprick,; L. Wilbraham,; S. J. A. Moniz,; R. Godin,; M. A. Zwijnenburg,; J. R. Durrant,; A. I. Cooper, et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 4, 746-760.
[21]
S. W. Cao,; J. Low,; J. G. Yu,; M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-2176.
[22]
D. D. Gao,; W. J. Liu,; Y. Xu,; P. Wang,; J. J. Fan,; H. G. Yu, Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: One-step photoinduced deposition and its improved H2-evolution activity. Appl. Catal. B: Environ. 2020, 260, 118190.
[23]
Y. D. Luo,; B. Deng,; Y. Pu,; A. N. Liu,; J. M. Wang,; K. L. Ma,; F. Gao,; B. Gao,; W. X. Zou,; L. Dong, Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation. Appl. Catal. B: Environ. 2019, 247, 1-9.
[24]
Y. J. Yuan,; Z. K. Shen,; S. T. Wu,; Y. B. Su,; L. Pei,; Z. G. Ji,; M. Y. Ding,; W. F. Bai,; Y. F. Chen,; Z. T. Yu, et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl. Catal. B: Environ. 2019, 246, 120-128.
[25]
X. G. Li,; W. T. Bi,; L. Zhang,; S. Tao,; W. S. Chu,; Q. Zhang,; Y. Luo,; C. Z. Wu,; Y. Xie, Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427-2431.
[26]
M. Ou,; S. P. Wan,; Q. Zhong,; S. L. Zhang,; Y. N. Wang, Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light. Int. J. Hyd. Energy 2017, 42, 27043-27054.
[27]
Y. J. Cao,; D. H. Wang,; Y. Lin,; W. Liu,; L. L. Cao,; X. K. Liu,; W. Zhang,; X. L. Mou,; S. Fang,; X. Y. Shen, et al. Single Pt atom with highly vacant d-orbital for accelerating photocatalytic H2 evolution. ACS Appl. Energy Mater. 2018, 1, 6082-6088.
[28]
H. Su,; W. Che,; F. M. Tang,; W. R. Cheng,; X. Zhao,; H. Zhang,; Q. H. Liu, Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting. J. Phys. Chem. C 2018, 122, 21108-21114.
[29]
L. W. Zhang,; R. Long,; Y. M. Zhang,; D. L. Duan,; Y. J. Xiong,; Y. J. Zhang,; Y. P. Bi, Direct observation of dynamic bond evolution in singleatom Pt/C3N4 catalysts. Angew. Chem., Int. Ed. 2020, 132, 6283-6288.
[30]
P. Zhou,; F. Lv,; N. Li,; Y. L. Zhang,; Z. J. Mu,; Y. H. Tang,; J. P. Lai,; Y. G. Chao,; M. C. Luo,; F. Lin, et al. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 2019, 56, 127-137.
[31]
Z. X. Zeng,; Y. Su,; X. Quan,; W. Choi,; G. H. Zhang,; N. Liu,; B. Kim,; S. Chen,; H. T. Yu,; S. S. Zhang, Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 69, 104409.
[32]
H. Su,; M. H. Liu,; W. R. Cheng,; X. Zhao,; F. C. Hu,; Q. H. Liu, Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting. J. Mater. Chem. A 2019, 7, 11170-11176.
[33]
Y. L. Yang,; F. Li,; J. Chen,; J. J. Fan,; Q. J. Xiang, Single Au atoms anchored on aminogroupenriched graphitic carbon nitride for photocatalytic CO2 reduction. ChemSusChem 2020, 13, 1979-1985.
[34]
L. Zeng,; C. H. Dai,; B. Liu,; C. Xue, Oxygen-assisted stabilization of single-atom Au during photocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 24217-24221.
[35]
S. W. Cao,; H. Li,; T. Tong,; H. C. Chen,; A. C. Yu,; J. G. Yu,; H. M. Chen, Singleatom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.
[36]
L. P. Liu,; X. Wu,; L. Wang,; X. J. Xu,; L. Gan,; Z. C. Si,; J. Li,; Q. Zhang,; Y. X. Liu,; Y. Y. Zhao, et al. Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Commun. Chem. 2019, 2, 18.
[37]
Y. J. Cao,; S. Chen,; Q. Q. Luo,; H. Yan,; Y. Lin,; W. Liu,; L. L. Cao,; J. L. Lu,; J. L. Yang,; T. Yao, et al. Atomiclevel insight into optimizing the hydrogen evolution pathway over a Co1N4 singlesite photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191-12196.
[38]
W. Liu,; L. L. Cao,; W. R. Cheng,; Y. J. Cao,; X. K. Liu,; W. Zhang,; X. L. Mou,; L. L. Jin,; X. S. Zheng,; W. Che, et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem., Int. Ed. 2017, 129, 9440-9445.
[39]
P. P. Huang,; J. H. Huang,; S. A. Pantovich,; A. D. Carl,; T. G. Fenton,; C. A. Caputo,; R. L. Grimm,; A. I. Frenkel,; G. H. Li, Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 2018, 140, 16042-16047.
[40]
C. H. Chu,; Q. H. Zhu,; Z. H. Pan,; S. Gupta,; D. H. Huang,; Y. H. Du,; S. Weon,; Y. S. Wu,; C. Muhich,; E. Stavitski, et al. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc. Natl. Acad. Sci. USA 2020, 117, 6376-6382.
[41]
W. Y. Zhang,; Q. Peng,; L. L. Shi,; Q. S. Yao,; X. Wang,; A. P. Yu,; Z. W. Chen,; Y. S. Fu, Merging single-atom-dispersed iron and graphitic carbon nitride to a joint electronic system for high-efficiency photocatalytic hydrogen evolution. Small 2019, 15, 1905166.
[42]
X. X. Jin,; R. Y. Wang,; L. X. Zhang,; R. Si,; M. Shen,; M. Wang,; J. J. Tian,; J. L. Shi, Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 132, 6894-6898.
[43]
S. F. Ji,; Y. Qu,; T. Wang,; Y. J. Chen,; G. F. Wang,; X. Li,; J. C. Dong,; Q. Y. Chen,; W. Y. Zhang,; Z. D. Zhang, et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651-10657.
[44]
R. Shi,; Y. X. Zhao,; G. I. N. Waterhouse,; S. Zhang,; T. R. Zhang, Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 9, 9739-9750.
[45]
P. C. Huang,; W. Liu,; Z. H. He,; C. Xiao,; T. Yao,; Y. M. Zou,; C. M. Wang,; Z. M. Qi,; W. Tong,; B. C. Pan, et al. Single atom accelerates ammonia photosynthesis. Sci. China Chem. 2018, 61, 1187-1196.
[46]
X. W. Guo,; S. M. Chen,; H. J. Wang,; Z. M. Zhang,; H. Lin,; L. Song,; T. B. Lu, Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. J. Mater. Chem. A 2019, 7, 19831-19837.
[47]
Z. B. Liang,; C. Qu,; D. D. Xia,; R. Q. Zou,; Q. Xu, Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604-9633.
[48]
H. Z. Yang,; X. Wang, Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.
[49]
J. Zhao,; X. Liu,; Y. P. Wu,; D. S. Li,; Q. C. Zhang, Surfactants as promising media in the field of metal-organic frameworks. Coord. Chem. Rev. 2019, 391, 30-43.
[50]
W. X. Chen,; J. J. Pei,; C. T. He,; J. W. Wan,; H. L. Ren,; Y. Wang,; J. C. Dong,; K. L. Wu,; W. C. Cheong,; J. J. Mao, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.
[51]
S. Dou,; C. L. Dong,; Z. Hu,; Y. C. Huang,; J. L. Chen,; L. Tao,; D. F. Yan,; D. W. Chen,; S. H. Shen,; S. L. Chou, et al. Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.
[52]
C. M. Zhao,; X. Y. Dai,; T. Yao,; W. X. Chen,; X. Q. Wang,; J. Wang,; J. Yang,; S. Q. Wei,; Y. Wu,; Y. D. Li, Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078-8081.
[53]
A. M. Abdel-Mageed,; B. Rungtaweevoranit,; M. Parlinska-Wojtan,; X. K. Pei,; O. M. Yaghi,; R. J. Behm, Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201-5210.
[54]
X. Z. Fang,; Q. C. Shang,; Y. Wang,; L. Jiao,; T. Yao,; Y. F. Li,; Q. Zhang,; Y. Luo,; H. L. Jiang, Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.
[55]
Q. Zuo,; T. T. Liu,; C. S. Chen,; Y. Ji,; X. Q. Gong,; Y. Y. Mai,; Y. F. Zhou, Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 58, 10198-10203.
[56]
J. Li,; H. L. Huang,; P. Liu,; X. H. Song,; D. H. Mei,; Y. Z. Tang,; X. Wang,; C. L. Zhong, Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution. J. Catal. 2019, 375, 351-360.
[57]
S. Z. Yang,; B. Pattengale,; S. Huang, J. E. Lee, Real-time visualization of active species in a single-site metal-organic framework photocatalyst. ACS Energy Lett. 2018, 3, 532-539.
[58]
H. B. Zhang,; J. Wei,; J. C. Dong,; G. G. Liu,; L. Shi,; P. F. An,; G. X. Zhao,; J. T. Kong,; X. J. Wang,; X. G. Meng, et al. Efficient Visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310-14314.
[59]
S. S. Yuan,; X. Li,; J. Y. Zhu,; G. Zhang,; P. Van Puyvelde,; B. Van der Bruggen, Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 2019, 48, 2665-2681.
[60]
S. J. Wei,; Y. Wang,; W. X. Chen,; Z. Li,; W. C. Cheong,; Q. H. Zhang,; Y. Gong,; L. Gu,; C. Chen,; D. S. Wang, et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 2020, 11, 786-790.
[61]
Y. F. Zeng,; R. Q. Zou,; Y. L. Zhao, Covalent organic frameworks for CO2 capture. Adv. Mater. 2016, 28, 2855-2873.
[62]
W. F. Zhong,; R. J. Sa,; L. Y. Li,; Y. J. He,; L. Y. Li,; J. H. Bi,; Z. Y. Zhuang,; Y. Yu,; Z. G. Zou, A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615-7621.
[63]
Y. Wang,; J. Mao,; X. G. Meng,; L. Yu,; D. H. Deng,; X. H. Bao, Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806-1854.
[64]
D. Kong,; X. Y. Han,; J. J. Xie,; Q. S. Ruan,; C. D. Windle,; S. Gadipelli,; K. Shen,; Z. M. Bai,; Z. X. Guo,; J. W. Tang, Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting. ACS Catal. 2019, 9, 7697-7707.
[65]
L. P. Guo,; Y. L. Niu,; S. Razzaque,; B. Tan,; S. B. Jin, Design of D-A1-A2 covalent triazine frameworks via copolymerization for photocatalytic hydrogen evolution. ACS Catal. 2019, 9, 9438-9445.
[66]
J. Li,; P. Liu,; Y. Z. Tang,; H. L. Huang,; H. Z. Cui,; D. H. Mei,; C. L. Zhong, Single-atom Pt-N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal. 2020, 10, 2431-2442.
[67]
Y. F. Li,; C. Chen,; R. Cao,; Z. W. Pan,; H. He,; K. B. Zhou, Dual- atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 268, 118747.
[68]
J. N. Tiwari,; A. N. Singh,; S. Sultan,; K. S. Kim, Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Adv. Energy Mater. 2020, 10, 2000280.
[69]
S. X. Liang,; C. Zhu,; N. T. Zhang,; S. Zhang,; B. T. Qiao,; H. Liu,; X. Y. Liu,; Z. Liu,; X. D. Song,; H. M. Zhang, et al. A novel single-atom electrocatalyst Ti1/rGO for efficient cathodic reduction in hybrid photovoltaics. Adv. Mater. 2020, 32, 2000478.
[70]
C. Gao,; S. M. Chen,; Y. Wang,; J. W. Wang,; X. S. Zheng,; J. F. Zhu,; L. Song,; W. K. Zhang,; Y. J. Xiong, Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.
[71]
Q. Zhao,; W. F. Yao,; C. P. Huang,; Q. Wu,; Q. J. Xu, Effective and durable co single atomic cocatalysts for photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2017, 9, 42734-42741.
[72]
Q. Zhao,; J. Sun,; S. C. Li,; C. P. Huang,; W. F. Yao,; W. Chen,; T. Zeng,; Q. Wu,; Q. J. Xu, Single nickel atoms anchored on nitrogen- doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 2018, 8, 11863-11874.
[73]
S. Q. Zhou,; L. Shang,; Y. X. Zhao,; R. Shi,; G. I. N. Waterhouse,; Y. C. Huang,; L. R. Zheng,; T. R. Zhang, Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.
[74]
Q. Wang,; J. Li,; X. J. Tu,; H. B. Liu,; M. Shu,; R. Si,; C. T. J. Ferguson,; K. A. I. Zhang,; R. Li, Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light- promoted oxidation reactions. Chem. Mater. 2020, 32, 734-743.
[75]
S. Neubert,; D. Mitoraj,; S. A. Shevlin,; P. Pulisova,; M. Heimann,; Y. H. Du,; G. K. L. Goh,; M. Pacia,; K. Kruczała,; S. Turner, et al. Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites. J. Mater. Chem. A 2016, 4, 3127-3138.
[76]
R. Trofimovaite,; C. M. A. Parlett,; S. Kumar,; L. Frattini,; M. A. Isaacs,; K. Wilson,; L. Olivi,; B. Coulson,; J. Debgupta,; R. E. Douthwaite, et al. Single atom Cu(I) promoted mesoporous titanias for photocatalytic methyl orange depollution and H2 production. Appl. Catal. B: Environ. 2018, 232, 501-511.
[77]
B. H. Lee,; S. Park,; M. Kim,; A. K. Sinha,; S. C. Lee,; E. Jung,; W. J. Chang,; K. S. Lee,; J. H. Kim,; S. P. Cho, et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620-626.
[78]
L. Yuan,; S. F. Hung,; Z. R. Tang,; H. M. Chen,; Y. J. Xiong,; Y. J. Xu, Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal. 2019, 9, 4824-4833.
[79]
Z. Y. Jiang,; W. Sun,; W. K. Miao,; Z. M. Yuan,; G. H. Yang,; F. G. Kong,; T. J. Yan,; J. C. Chen,; B. B. Huang,; C. H. An, et al. Living atomically dispersed Cu ultrathin TiO2 nanosheet CO2 reduction photocatalyst. Adv. Sci. 2019, 6, 1900289.
[80]
G. Jeantelot,; M. Qureshi,; M. Harb,; S. Ould-Chikh,; D. H. Anjum,; E. Abou-Hamad,; A. Aguilar-Tapia,; J. L. Hazemann,; K. Takanabe,; J. M. Basset, TiO2-supported Pt single atoms by surface organometallic chemistry for photocatalytic hydrogen evolution. Phys. Chem. Chem. Phys. 2019, 21, 24429-24440.
[81]
Y. J. Chen,; S. F. Ji,; W. M. Sun,; Y. P. Lei,; Q. C. Wang,; A. Li,; W. X. Chen,; G. Zhou,; Z. D. Zhang,; Y. Wang, et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295-1301.
[82]
S. Hejazi,; S. Mohajernia,; B. Osuagwu,; G. Zoppellaro,; P. Andryskova,; O. Tomanec,; S. Kment,; R. Zbořil,; P. Schmuki, On the controlled loading of single platinum atoms as a Co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 2020, 32, 1908505.
[83]
S. Z. Liu,; Y. J. Wang,; S. B. Wang,; M. M. You,; S. Hong,; T. S. Wu,; Y. L. Soo,; Z. Q. Zhao,; G. Y. Jiang,; J. S. Qiu, et al. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustainable Chem. Eng. 2019, 7, 6813-6820.
[84]
X. X. Ge,; P. Zhou,; Q. H. Zhang,; Z. H. Xia,; S. L. Chen,; P. Gao,; Z. Zhang,; L. Gu,; S. J. Guo, Palladium single atoms on TiO2 as a photocatalytic sensing platform for analyzing the organophosphorus pesticide chlorpyrifos. Angew. Chem., Int. Ed. 2020, 59, 232-236.
[85]
K. Fujiwara,; S. E. Pratsinis, Single Pd atoms on TiO2 dominate photocatalytic NOx removal. Appl. Catal. B: Environ. 2018, 226, 127-134.
[86]
M. Xiao,; L. Zhang,; B. Luo,; M. Lyu,; Z. L. Wang,; H. M. Huang,; S. C. Wang,; A. J. Du,; L. Z. Wang, Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230-7234.
[87]
J. Di,; C. Chen,; S. Z. Yang,; S. M. Chen,; M. L. Duan,; J. Xiong,; C. Zhu,; R. Long,; W. Hao,; Z. Chi, et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.
[88]
X. Wu,; H. B. Zhang,; J. C. Dong,; M. Qiu,; J. T. Kong,; Y. F. Zhang,; Y. Li,; G. L. Xu,; J. Zhang,; J. H. Ye, Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 2018, 45, 109-117.
[89]
S. J. Qiu,; Y. L. Shen,; G. J. Wei,; S. Yao,; W. Xi,; M. Shu,; R. Si,; M. Zhang,; J. F. Zhu,; C. H. An, Carbon dots decorated ultrathin CdS nanosheets enabling in-situ anchored Pt single atoms: A highly efficient solar-driven photocatalyst for hydrogen evolution. Appl. Catal. B: Environ. 2019, 259, 118036.
[90]
P. Zhou,; Q. H. Zhang,; Z. K. Xu,; Q. Y. Shang,; L. Wang,; Y. G. Chao,; Y. J. Li,; H. Chen,; F. Lv,; Q. Zhang, et al. Atomically dispersed Co-P3 on CdS nanorods with electron-rich feature boosts photocatalysis. Adv. Mater. 2020, 32, 1904249.
[91]
H. Z. Zhang,; Y. M. Dong,; S. Zhao,; G. L. Wang,; P. P. Jiang,; J. Zhong,; Y. F. Zhu, Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 261, 118233.
[92]
G. N. Li,; H. L. Duan,; W. R. Cheng,; C. Wang,; W. Hu,; Z. H. Sun,; H. Tan,; N. Li,; Q. Q. Ji,; Y. Wang, et al. Interlayer photoelectron transfer boosted by bridged RuIV atoms in GaS nanosheets for efficient water splitting. ACS Appl. Mater. Interfaces 2019, 11, 45561-45567.
[93]
Y. Xiong,; W. M. Sun,; P. Y. Xin,; W. X. Chen,; X. S. Zheng,; W. S. Yan,; L. R. Zheng,; J. C. Dong,; J. Zhang,; D. S. Wang, et al. Gram- scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, 2000896.
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 July 2020
Revised: 02 September 2020
Accepted: 07 September 2020
Published: 01 October 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors thank the support from the Ministry of Education, Singapore, under AcRF-Tier2 (MOE2018-T2-1-017) and AcRF- Tier1 (MOE2019-T1-002-012, RG102/19).

Return