[1]
Q. Guo,; C. Y. Zhou,; Z. B. Ma,; X. M. Yang, Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.
[2]
B. T. Qiao,; A. Q. Wang,; X. F. Yang,; L. F. Allard,; Z. Jiang,; Y. T. Cui,; J. Y. Liu,; J. Li,; T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[3]
S. P. Ding,; M. J. Hülsey,; J. Pérez-Ramírez,; N. Yan, Transforming energy with single-atom catalysts. Joule 2019, 3, 2897-2929.
[4]
Z. W. Chen,; L. X. Chen,; C. C. Yang,; Q. Jiang, Atomic (single, double, and triple atoms) catalysis: Frontiers, opportunities, and challenges. J. Mater. Chem. A 2019, 7, 3492-3515.
[5]
Y. Z. Zhang,; B. Q. Xia,; J. G. Ran,; K. Davey,; S. Z. Qiao. Atomic- level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 1903879.
[6]
W. H. Lai,; Z. C. Miao,; Y. X. Wang,; J. Z. Wang,; S. L. Chou, Atomic-local environments of single-atom catalysts: Synthesis, electronic structure, and activity. Adv. Energy Mater. 2019, 9, 1900722.
[7]
S. Sultan,; J. N. Tiwari,; A. N. Singh,; S. Zhumagali,; M. R. Ha,; C. W. Myung,; P. Thangavel,; K. S. Kim, Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.
[8]
L. C. Liu,; A. Corma, Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
[9]
T. T. Wang,; Q. D. Zhao,; Y. Y. Fu,; C. J. Lei,; B. Yang,; Z. J. Li,; L. C. Lei,; G. Wu,; Y. Hou, Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 2019, 3, 1900210.
[10]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[11]
N. Q. Zhang,; C. L. Ye,; H. Yan,; L. C. Li,; H. He,; D. S. Wang,; Y. D. Li, Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.
[12]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[13]
T. T. Sun,; Y. L. Li,; T. T. Cui,; L. B. Xu,; Y. G. Wang,; W. X. Chen,; P. P. Zhang,; T. X. Zheng,; X. Z. Fu,; Z. D. Zhang, et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206-6214.
[14]
J. Zhang,; C. Y. Zheng,; M. L. Zhang,; Y. J. Qiu,; Q. Xu,; W. C. Cheong,; W. X. Chen,; L. R. Zheng,; L. Gu,; Z. P. Hu, et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082-3087.
[15]
Y. Z. Zhu,; J. Sokolowski,; X. C. Song,; Y. H. He,; Y. Mei,; G. Wu, Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 2020, 10, 1902844.
[16]
B. Wang,; H. R. Cai,; S. H. Shen, Single metal atom photocatalysis. Small Methods 2019, 3, 1800447.
[17]
C. Gao,; J. Low,; R. Long,; T. T. Kong,; J. F. Zhu,; Y. J. Xiong, Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev., in press, .
[18]
J. W. Fu,; S. D. Wang,; Z. H. Wang,; K. Liu,; H. J. W. Li,; H. Liu,; J. H. Hu,; X. W. Xu,; H. M. Li,; M. Liu, Graphitic carbon nitride based single-atom photocatalysts. Front. Phys. 2020, 15, 33201.
[19]
M. Shen,; L. X. Zhang,; J. L. Shi, Converting CO2 into fuels by graphitic carbon nitride-based photocatalysts. Nanotechnology 2018, 29, 412001.
[20]
Y. O. Wang,; A. Vogel,; M. Sachs,; R. S. Sprick,; L. Wilbraham,; S. J. A. Moniz,; R. Godin,; M. A. Zwijnenburg,; J. R. Durrant,; A. I. Cooper, et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 4, 746-760.
[21]
S. W. Cao,; J. Low,; J. G. Yu,; M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-2176.
[22]
D. D. Gao,; W. J. Liu,; Y. Xu,; P. Wang,; J. J. Fan,; H. G. Yu, Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: One-step photoinduced deposition and its improved H2-evolution activity. Appl. Catal. B: Environ. 2020, 260, 118190.
[23]
Y. D. Luo,; B. Deng,; Y. Pu,; A. N. Liu,; J. M. Wang,; K. L. Ma,; F. Gao,; B. Gao,; W. X. Zou,; L. Dong, Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation. Appl. Catal. B: Environ. 2019, 247, 1-9.
[24]
Y. J. Yuan,; Z. K. Shen,; S. T. Wu,; Y. B. Su,; L. Pei,; Z. G. Ji,; M. Y. Ding,; W. F. Bai,; Y. F. Chen,; Z. T. Yu, et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl. Catal. B: Environ. 2019, 246, 120-128.
[25]
X. G. Li,; W. T. Bi,; L. Zhang,; S. Tao,; W. S. Chu,; Q. Zhang,; Y. Luo,; C. Z. Wu,; Y. Xie, Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427-2431.
[26]
M. Ou,; S. P. Wan,; Q. Zhong,; S. L. Zhang,; Y. N. Wang, Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light. Int. J. Hyd. Energy 2017, 42, 27043-27054.
[27]
Y. J. Cao,; D. H. Wang,; Y. Lin,; W. Liu,; L. L. Cao,; X. K. Liu,; W. Zhang,; X. L. Mou,; S. Fang,; X. Y. Shen, et al. Single Pt atom with highly vacant d-orbital for accelerating photocatalytic H2 evolution. ACS Appl. Energy Mater. 2018, 1, 6082-6088.
[28]
H. Su,; W. Che,; F. M. Tang,; W. R. Cheng,; X. Zhao,; H. Zhang,; Q. H. Liu, Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting. J. Phys. Chem. C 2018, 122, 21108-21114.
[29]
L. W. Zhang,; R. Long,; Y. M. Zhang,; D. L. Duan,; Y. J. Xiong,; Y. J. Zhang,; Y. P. Bi, Direct observation of dynamic bond evolution in singleatom Pt/C3N4 catalysts. Angew. Chem., Int. Ed. 2020, 132, 6283-6288.
[30]
P. Zhou,; F. Lv,; N. Li,; Y. L. Zhang,; Z. J. Mu,; Y. H. Tang,; J. P. Lai,; Y. G. Chao,; M. C. Luo,; F. Lin, et al. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 2019, 56, 127-137.
[31]
Z. X. Zeng,; Y. Su,; X. Quan,; W. Choi,; G. H. Zhang,; N. Liu,; B. Kim,; S. Chen,; H. T. Yu,; S. S. Zhang, Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 69, 104409.
[32]
H. Su,; M. H. Liu,; W. R. Cheng,; X. Zhao,; F. C. Hu,; Q. H. Liu, Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting. J. Mater. Chem. A 2019, 7, 11170-11176.
[33]
Y. L. Yang,; F. Li,; J. Chen,; J. J. Fan,; Q. J. Xiang, Single Au atoms anchored on aminogroupenriched graphitic carbon nitride for photocatalytic CO2 reduction. ChemSusChem 2020, 13, 1979-1985.
[34]
L. Zeng,; C. H. Dai,; B. Liu,; C. Xue, Oxygen-assisted stabilization of single-atom Au during photocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 24217-24221.
[35]
S. W. Cao,; H. Li,; T. Tong,; H. C. Chen,; A. C. Yu,; J. G. Yu,; H. M. Chen, Singleatom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.
[36]
L. P. Liu,; X. Wu,; L. Wang,; X. J. Xu,; L. Gan,; Z. C. Si,; J. Li,; Q. Zhang,; Y. X. Liu,; Y. Y. Zhao, et al. Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Commun. Chem. 2019, 2, 18.
[37]
Y. J. Cao,; S. Chen,; Q. Q. Luo,; H. Yan,; Y. Lin,; W. Liu,; L. L. Cao,; J. L. Lu,; J. L. Yang,; T. Yao, et al. Atomiclevel insight into optimizing the hydrogen evolution pathway over a Co1N4 singlesite photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191-12196.
[38]
W. Liu,; L. L. Cao,; W. R. Cheng,; Y. J. Cao,; X. K. Liu,; W. Zhang,; X. L. Mou,; L. L. Jin,; X. S. Zheng,; W. Che, et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem., Int. Ed. 2017, 129, 9440-9445.
[39]
P. P. Huang,; J. H. Huang,; S. A. Pantovich,; A. D. Carl,; T. G. Fenton,; C. A. Caputo,; R. L. Grimm,; A. I. Frenkel,; G. H. Li, Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 2018, 140, 16042-16047.
[40]
C. H. Chu,; Q. H. Zhu,; Z. H. Pan,; S. Gupta,; D. H. Huang,; Y. H. Du,; S. Weon,; Y. S. Wu,; C. Muhich,; E. Stavitski, et al. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc. Natl. Acad. Sci. USA 2020, 117, 6376-6382.
[41]
W. Y. Zhang,; Q. Peng,; L. L. Shi,; Q. S. Yao,; X. Wang,; A. P. Yu,; Z. W. Chen,; Y. S. Fu, Merging single-atom-dispersed iron and graphitic carbon nitride to a joint electronic system for high-efficiency photocatalytic hydrogen evolution. Small 2019, 15, 1905166.
[42]
X. X. Jin,; R. Y. Wang,; L. X. Zhang,; R. Si,; M. Shen,; M. Wang,; J. J. Tian,; J. L. Shi, Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 132, 6894-6898.
[43]
S. F. Ji,; Y. Qu,; T. Wang,; Y. J. Chen,; G. F. Wang,; X. Li,; J. C. Dong,; Q. Y. Chen,; W. Y. Zhang,; Z. D. Zhang, et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651-10657.
[44]
R. Shi,; Y. X. Zhao,; G. I. N. Waterhouse,; S. Zhang,; T. R. Zhang, Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 9, 9739-9750.
[45]
P. C. Huang,; W. Liu,; Z. H. He,; C. Xiao,; T. Yao,; Y. M. Zou,; C. M. Wang,; Z. M. Qi,; W. Tong,; B. C. Pan, et al. Single atom accelerates ammonia photosynthesis. Sci. China Chem. 2018, 61, 1187-1196.
[46]
X. W. Guo,; S. M. Chen,; H. J. Wang,; Z. M. Zhang,; H. Lin,; L. Song,; T. B. Lu, Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. J. Mater. Chem. A 2019, 7, 19831-19837.
[47]
Z. B. Liang,; C. Qu,; D. D. Xia,; R. Q. Zou,; Q. Xu, Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604-9633.
[48]
H. Z. Yang,; X. Wang, Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.
[49]
J. Zhao,; X. Liu,; Y. P. Wu,; D. S. Li,; Q. C. Zhang, Surfactants as promising media in the field of metal-organic frameworks. Coord. Chem. Rev. 2019, 391, 30-43.
[50]
W. X. Chen,; J. J. Pei,; C. T. He,; J. W. Wan,; H. L. Ren,; Y. Wang,; J. C. Dong,; K. L. Wu,; W. C. Cheong,; J. J. Mao, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.
[51]
S. Dou,; C. L. Dong,; Z. Hu,; Y. C. Huang,; J. L. Chen,; L. Tao,; D. F. Yan,; D. W. Chen,; S. H. Shen,; S. L. Chou, et al. Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.
[52]
C. M. Zhao,; X. Y. Dai,; T. Yao,; W. X. Chen,; X. Q. Wang,; J. Wang,; J. Yang,; S. Q. Wei,; Y. Wu,; Y. D. Li, Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078-8081.
[53]
A. M. Abdel-Mageed,; B. Rungtaweevoranit,; M. Parlinska-Wojtan,; X. K. Pei,; O. M. Yaghi,; R. J. Behm, Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201-5210.
[54]
X. Z. Fang,; Q. C. Shang,; Y. Wang,; L. Jiao,; T. Yao,; Y. F. Li,; Q. Zhang,; Y. Luo,; H. L. Jiang, Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.
[55]
Q. Zuo,; T. T. Liu,; C. S. Chen,; Y. Ji,; X. Q. Gong,; Y. Y. Mai,; Y. F. Zhou, Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 58, 10198-10203.
[56]
J. Li,; H. L. Huang,; P. Liu,; X. H. Song,; D. H. Mei,; Y. Z. Tang,; X. Wang,; C. L. Zhong, Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution. J. Catal. 2019, 375, 351-360.
[57]
S. Z. Yang,; B. Pattengale,; S. Huang, J. E. Lee, Real-time visualization of active species in a single-site metal-organic framework photocatalyst. ACS Energy Lett. 2018, 3, 532-539.
[58]
H. B. Zhang,; J. Wei,; J. C. Dong,; G. G. Liu,; L. Shi,; P. F. An,; G. X. Zhao,; J. T. Kong,; X. J. Wang,; X. G. Meng, et al. Efficient Visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310-14314.
[59]
S. S. Yuan,; X. Li,; J. Y. Zhu,; G. Zhang,; P. Van Puyvelde,; B. Van der Bruggen, Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 2019, 48, 2665-2681.
[60]
S. J. Wei,; Y. Wang,; W. X. Chen,; Z. Li,; W. C. Cheong,; Q. H. Zhang,; Y. Gong,; L. Gu,; C. Chen,; D. S. Wang, et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 2020, 11, 786-790.
[61]
Y. F. Zeng,; R. Q. Zou,; Y. L. Zhao, Covalent organic frameworks for CO2 capture. Adv. Mater. 2016, 28, 2855-2873.
[62]
W. F. Zhong,; R. J. Sa,; L. Y. Li,; Y. J. He,; L. Y. Li,; J. H. Bi,; Z. Y. Zhuang,; Y. Yu,; Z. G. Zou, A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615-7621.
[63]
Y. Wang,; J. Mao,; X. G. Meng,; L. Yu,; D. H. Deng,; X. H. Bao, Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806-1854.
[64]
D. Kong,; X. Y. Han,; J. J. Xie,; Q. S. Ruan,; C. D. Windle,; S. Gadipelli,; K. Shen,; Z. M. Bai,; Z. X. Guo,; J. W. Tang, Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting. ACS Catal. 2019, 9, 7697-7707.
[65]
L. P. Guo,; Y. L. Niu,; S. Razzaque,; B. Tan,; S. B. Jin, Design of D-A1-A2 covalent triazine frameworks via copolymerization for photocatalytic hydrogen evolution. ACS Catal. 2019, 9, 9438-9445.
[66]
J. Li,; P. Liu,; Y. Z. Tang,; H. L. Huang,; H. Z. Cui,; D. H. Mei,; C. L. Zhong, Single-atom Pt-N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal. 2020, 10, 2431-2442.
[67]
Y. F. Li,; C. Chen,; R. Cao,; Z. W. Pan,; H. He,; K. B. Zhou, Dual- atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 268, 118747.
[68]
J. N. Tiwari,; A. N. Singh,; S. Sultan,; K. S. Kim, Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Adv. Energy Mater. 2020, 10, 2000280.
[69]
S. X. Liang,; C. Zhu,; N. T. Zhang,; S. Zhang,; B. T. Qiao,; H. Liu,; X. Y. Liu,; Z. Liu,; X. D. Song,; H. M. Zhang, et al. A novel single-atom electrocatalyst Ti1/rGO for efficient cathodic reduction in hybrid photovoltaics. Adv. Mater. 2020, 32, 2000478.
[70]
C. Gao,; S. M. Chen,; Y. Wang,; J. W. Wang,; X. S. Zheng,; J. F. Zhu,; L. Song,; W. K. Zhang,; Y. J. Xiong, Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.
[71]
Q. Zhao,; W. F. Yao,; C. P. Huang,; Q. Wu,; Q. J. Xu, Effective and durable co single atomic cocatalysts for photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2017, 9, 42734-42741.
[72]
Q. Zhao,; J. Sun,; S. C. Li,; C. P. Huang,; W. F. Yao,; W. Chen,; T. Zeng,; Q. Wu,; Q. J. Xu, Single nickel atoms anchored on nitrogen- doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 2018, 8, 11863-11874.
[73]
S. Q. Zhou,; L. Shang,; Y. X. Zhao,; R. Shi,; G. I. N. Waterhouse,; Y. C. Huang,; L. R. Zheng,; T. R. Zhang, Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.
[74]
Q. Wang,; J. Li,; X. J. Tu,; H. B. Liu,; M. Shu,; R. Si,; C. T. J. Ferguson,; K. A. I. Zhang,; R. Li, Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light- promoted oxidation reactions. Chem. Mater. 2020, 32, 734-743.
[75]
S. Neubert,; D. Mitoraj,; S. A. Shevlin,; P. Pulisova,; M. Heimann,; Y. H. Du,; G. K. L. Goh,; M. Pacia,; K. Kruczała,; S. Turner, et al. Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites. J. Mater. Chem. A 2016, 4, 3127-3138.
[76]
R. Trofimovaite,; C. M. A. Parlett,; S. Kumar,; L. Frattini,; M. A. Isaacs,; K. Wilson,; L. Olivi,; B. Coulson,; J. Debgupta,; R. E. Douthwaite, et al. Single atom Cu(I) promoted mesoporous titanias for photocatalytic methyl orange depollution and H2 production. Appl. Catal. B: Environ. 2018, 232, 501-511.
[77]
B. H. Lee,; S. Park,; M. Kim,; A. K. Sinha,; S. C. Lee,; E. Jung,; W. J. Chang,; K. S. Lee,; J. H. Kim,; S. P. Cho, et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620-626.
[78]
L. Yuan,; S. F. Hung,; Z. R. Tang,; H. M. Chen,; Y. J. Xiong,; Y. J. Xu, Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal. 2019, 9, 4824-4833.
[79]
Z. Y. Jiang,; W. Sun,; W. K. Miao,; Z. M. Yuan,; G. H. Yang,; F. G. Kong,; T. J. Yan,; J. C. Chen,; B. B. Huang,; C. H. An, et al. Living atomically dispersed Cu ultrathin TiO2 nanosheet CO2 reduction photocatalyst. Adv. Sci. 2019, 6, 1900289.
[80]
G. Jeantelot,; M. Qureshi,; M. Harb,; S. Ould-Chikh,; D. H. Anjum,; E. Abou-Hamad,; A. Aguilar-Tapia,; J. L. Hazemann,; K. Takanabe,; J. M. Basset, TiO2-supported Pt single atoms by surface organometallic chemistry for photocatalytic hydrogen evolution. Phys. Chem. Chem. Phys. 2019, 21, 24429-24440.
[81]
Y. J. Chen,; S. F. Ji,; W. M. Sun,; Y. P. Lei,; Q. C. Wang,; A. Li,; W. X. Chen,; G. Zhou,; Z. D. Zhang,; Y. Wang, et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295-1301.
[82]
S. Hejazi,; S. Mohajernia,; B. Osuagwu,; G. Zoppellaro,; P. Andryskova,; O. Tomanec,; S. Kment,; R. Zbořil,; P. Schmuki, On the controlled loading of single platinum atoms as a Co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 2020, 32, 1908505.
[83]
S. Z. Liu,; Y. J. Wang,; S. B. Wang,; M. M. You,; S. Hong,; T. S. Wu,; Y. L. Soo,; Z. Q. Zhao,; G. Y. Jiang,; J. S. Qiu, et al. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustainable Chem. Eng. 2019, 7, 6813-6820.
[84]
X. X. Ge,; P. Zhou,; Q. H. Zhang,; Z. H. Xia,; S. L. Chen,; P. Gao,; Z. Zhang,; L. Gu,; S. J. Guo, Palladium single atoms on TiO2 as a photocatalytic sensing platform for analyzing the organophosphorus pesticide chlorpyrifos. Angew. Chem., Int. Ed. 2020, 59, 232-236.
[85]
K. Fujiwara,; S. E. Pratsinis, Single Pd atoms on TiO2 dominate photocatalytic NOx removal. Appl. Catal. B: Environ. 2018, 226, 127-134.
[86]
M. Xiao,; L. Zhang,; B. Luo,; M. Lyu,; Z. L. Wang,; H. M. Huang,; S. C. Wang,; A. J. Du,; L. Z. Wang, Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230-7234.
[87]
J. Di,; C. Chen,; S. Z. Yang,; S. M. Chen,; M. L. Duan,; J. Xiong,; C. Zhu,; R. Long,; W. Hao,; Z. Chi, et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.
[88]
X. Wu,; H. B. Zhang,; J. C. Dong,; M. Qiu,; J. T. Kong,; Y. F. Zhang,; Y. Li,; G. L. Xu,; J. Zhang,; J. H. Ye, Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 2018, 45, 109-117.
[89]
S. J. Qiu,; Y. L. Shen,; G. J. Wei,; S. Yao,; W. Xi,; M. Shu,; R. Si,; M. Zhang,; J. F. Zhu,; C. H. An, Carbon dots decorated ultrathin CdS nanosheets enabling in-situ anchored Pt single atoms: A highly efficient solar-driven photocatalyst for hydrogen evolution. Appl. Catal. B: Environ. 2019, 259, 118036.
[90]
P. Zhou,; Q. H. Zhang,; Z. K. Xu,; Q. Y. Shang,; L. Wang,; Y. G. Chao,; Y. J. Li,; H. Chen,; F. Lv,; Q. Zhang, et al. Atomically dispersed Co-P3 on CdS nanorods with electron-rich feature boosts photocatalysis. Adv. Mater. 2020, 32, 1904249.
[91]
H. Z. Zhang,; Y. M. Dong,; S. Zhao,; G. L. Wang,; P. P. Jiang,; J. Zhong,; Y. F. Zhu, Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 261, 118233.
[92]
G. N. Li,; H. L. Duan,; W. R. Cheng,; C. Wang,; W. Hu,; Z. H. Sun,; H. Tan,; N. Li,; Q. Q. Ji,; Y. Wang, et al. Interlayer photoelectron transfer boosted by bridged RuIV atoms in GaS nanosheets for efficient water splitting. ACS Appl. Mater. Interfaces 2019, 11, 45561-45567.
[93]
Y. Xiong,; W. M. Sun,; P. Y. Xin,; W. X. Chen,; X. S. Zheng,; W. S. Yan,; L. R. Zheng,; J. C. Dong,; J. Zhang,; D. S. Wang, et al. Gram- scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, 2000896.