AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Probing interactions at two-dimensional heterointerfaces by boron nitride-wrapped tip

Baowen LiXiaofei LiuWanlin Guo( )
Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Show Author Information

Graphical Abstract

Abstract

Non-covalent interactions are important for two-dimensional heterointerfaces but challenged to be accurately determined, especially when the dielectric hexagonal boron nitride (BN) is involved. Here, we present a comprehensive quantitative investigation on the interactions at the interfaces of BN-BN, BN-molybdenum disulfide, and BN-graphite using a BN-wrapped atomic force microscope tip and first-principle theory. The critical adhesion forces at BN-molybdenum disulfide and BN-graphite interfaces are measured to be 1.107 ± 0.062 and 0.999 ± 0.053 times that at BN-BN interface, respectively, while increase to 1.195 ± 0.076 and 1.085 ± 0.075 a.u. after exposure of the tip to radiation in scanning electron microscopy, with data repeatability higher than 86%. The result with non-radiated tip agrees with the van der Waals interactions predicted by the state-of-the-art density functional theory-based vdW2D method, whereas the effect of radiation comes from the introduced charges in the tip, indicating the crucial roles of both dispersion and electrostatic interactions in construction, manipulation and device application of two-dimensional heterostructures.

Electronic Supplementary Material

Download File(s)
12274_2020_3098_MOESM1_ESM.pdf (4.6 MB)

References

[1]
Y. Liu,; N. O. Weiss,; X. D. Duan,; H. C. Cheng,; Y. Huang,; X. F. Duan Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[2]
E. Koren,; E. Lörtscher,; C. Rawlings,; A. W. Knoll,; U. Duerig Adhesion and friction in mesoscopic graphite contacts. Science 2015, 348, 679-683.
[3]
W. Wang,; S. Y. Dai,; X. D. Li,; J. R. Yang,; D. J. Srolovitz,; Q. S. Zheng, Measurement of the cleavage energy of graphite. Nat. Commun. 2015, 6, 7853.
[4]
D. M. Tang,; D. G. Kvashnin,; S. Najmaei,; Y. Bando,; K. Kimoto,; P. Koskinen,; P. M. Ajayan,; B. I. Yakobson,; P. B. Sorokin,; J. Lou, et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 2014, 5, 3631.
[5]
D. A. Sanchez,; Z. H. Dai,; P. Wang,; A. Cantu-Chavez,; C. J. Brennan,; R. Huang,; N. S. Lu, Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl. Acad. Sci. USA 2018, 115, 7884-7889.
[6]
S. J. Haigh,; A. Gholinia,; R. Jalil,; S. Romani,; L. Britnell,; D. C. Elias,; K. S. Novoselov,; L. A. Ponomarenko,; A. K. Geim,; R. Gorbachev, Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764-767.
[7]
B. W. Li,; J. Yin,; X. F. Liu,; H. R.. Wu,; J. D. Li,; X. M. Li,; W. L. Guo, Probing van der Waals interactions at two-dimensional heterointerfaces. Nat. Nanotechnol. 2019, 14, 567-572.
[8]
J. Harl,; G. Kresse, Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory. Phys. Rev. B 2008, 77, 045136.
[9]
C. Pisani,; L. Maschio,; S. Casassa,; M. Halo,; M. Schütz,; D. Usvyat, Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications. J. Comput. Chem. 2008, 29, 2113-2124.
[10]
R. J. Bartlett,; M. Musiał, Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291-352.
[11]
A. Tkatchenko,; R. A. DiStasio, Jr.; R. Car,; M. Scheffler, Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 2012, 108, 236402.
[12]
S. Grimme,; J. Antony,; S. Ehrlich,; H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[13]
M. Dion,; H. Rydberg,; E. Schröder,; D. C. Langreth,; B. I. Lundqvist, Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.
[14]
J. Klimeš,; D. R. Bowler,; A. Michaelides, Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2009, 22, 022201.
[15]
T. Björkman,; A. Gulans,; A. V. Krasheninnikov,; R. M. Nieminen van der Waals bonding in layered compounds from advanced density- functional first-principles calculations. Phys. Rev. Lett. 2012, 108, 235502.
[16]
X. F. Liu,; J. B. Yang,; W. L. Guo, Semiempirical van der Waals method for two-dimensional materials with incorporated dielectric functions. Phys. Rev. B 2020, 101, 045428.
[17]
T. Dumitrică,; B. I. Yakobson, Rate theory of yield in boron nitride nanotubes. Phys. Rev. B 2005, 72, 035418.
[18]
G. R. Wang,; Z. H. Dai,; J. K. Xiao,; S. Z. Feng,; C. X. Weng,; L. Q. Liu,; Z. P. Xu; R. Huang,; Z. Zhang, Bending of Multilayer van der Waals Materials. Phys. Rev. Lett. 2019, 123, 116101.
[19]
J. Kotakoski,; C. H. Jin,; O. Lehtinen,; K. Suenaga,; A. V. Krasheninnikov, Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 2010, 82, 113404.
[20]
J. S. Wang,; V. K. Kayastha,; Y. K. Yap,; Z. Y. Fan,; J. G. Lu,; Z. W. Pan,; I. N. Ivanov,; A. A. Puretzky,; D. B. Geohegan, Low temperature growth of boron nitride nanotubes on substrates. Nano Lett. 2005, 5, 2528-2532.
[21]
D. Johnson,; N. Hilal, Characterisation and quantification of membrane surface properties using atomic force microscopy: A comprehensive review. Desalination 2015, 356, 149-164.
[22]
C. Lee,; Q. Y. Li,; W. Kalb,; X. Z. Liu,; H. Berger,; R. W. Carpick,; J. Hone Frictional characteristics of atomically thin sheets. Science 2010, 328, 76-80.
[23]
M. Ishigami,; J. H. Chen,; W. G. Cullen,; M. S. Fuhrer,; E. D. Williams, Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643-1648.
[24]
H. F. Inman,; E. L. Bradley, Jr. The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. Commun. Stat. Theory Methods 1989, 18, 3851-3874.
[25]
K. S. Sim,; Y. Y. Tan,; M. A. Lai,; C. P. Tso,; W. K. Lim, Reducing scanning electron microscope charging by using exponential contrast stretching technique on post-processing images. J. Microsc. 2010, 238, 44-56.
[26]
K. H. Kim,; Z. Akase,; T. Suzuki,; D. Shindo, Charging effects on SEM/SIM contrast of metal/insulator system in various metallic coating conditions. Mater. Trans. 2010, 51, 1080-1083.
[27]
J. Cazaux, Charging in scanning electron microscopy “from inside and outside”. Scanning 2004, 26, 181-203.
[28]
T. Suzuki,; N. Endo,; M. Shibata,; S. Kamasaki,; T. Ichinokawa, Contrast differences between scanning ion and scanning electron microscope images. J. Vac. Sci. Technol. A 2004, 22, 49-52.
[29]
N. Jonassen, Electrostatics; 2nd ed. Kluwer Academic: Norwell, MA, 2002.
[30]
B. Radisavljevic,; A. Radenovic,; J. Brivio,; V. Giacometti,; A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[31]
K. S. Novoselov,; D. Jiang,; F. Schedin,; T. J. Booth,; V. V. Khotkevich,; S. V. Morozov,; A. K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
Nano Research
Pages 692-698
Cite this article:
Li B, Liu X, Guo W. Probing interactions at two-dimensional heterointerfaces by boron nitride-wrapped tip. Nano Research, 2021, 14(3): 692-698. https://doi.org/10.1007/s12274-020-3098-9
Topics:

682

Views

7

Crossref

0

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 16 July 2020
Revised: 29 August 2020
Accepted: 03 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return