Journal Home > Volume 14 , Issue 1

Optical manipulation of micro/nanoscale objects is of importance in life sciences, colloidal science, and nanotechnology. Optothermal tweezers exhibit superior manipulation capability at low optical intensity. However, our implicit understanding of the working mechanism has limited the further applications and innovations of optothermal tweezers. Herein, we present an atomistic view of opto-thermo-electro-mechanic coupling in optothermal tweezers, which enables us to rationally design the tweezers for optimum performance in targeted applications. Specifically, we have revealed that the non-uniform temperature distribution induces water polarization and charge separation, which creates the thermoelectric field dominating the optothermal trapping. We further design experiments to systematically verify our atomistic simulations. Guided by our new model, we develop new types of optothermal tweezers of high performance using low-concentrated electrolytes. Moreover, we demonstrate the use of new tweezers in opto-thermophoretic separation of colloidal particles of the same size based on the difference in their surface charge, which has been challenging for conventional optical tweezers. With the atomistic understanding that enables the performance optimization and function expansion, optothermal tweezers will further their impacts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomistic modeling and rational design of optothermal tweezers for targeted applications

Show Author's information Hongru Ding1Pavana Siddhartha Kollipara1Linhan Lin2( )Yuebing Zheng1,3( )
Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA

Abstract

Optical manipulation of micro/nanoscale objects is of importance in life sciences, colloidal science, and nanotechnology. Optothermal tweezers exhibit superior manipulation capability at low optical intensity. However, our implicit understanding of the working mechanism has limited the further applications and innovations of optothermal tweezers. Herein, we present an atomistic view of opto-thermo-electro-mechanic coupling in optothermal tweezers, which enables us to rationally design the tweezers for optimum performance in targeted applications. Specifically, we have revealed that the non-uniform temperature distribution induces water polarization and charge separation, which creates the thermoelectric field dominating the optothermal trapping. We further design experiments to systematically verify our atomistic simulations. Guided by our new model, we develop new types of optothermal tweezers of high performance using low-concentrated electrolytes. Moreover, we demonstrate the use of new tweezers in opto-thermophoretic separation of colloidal particles of the same size based on the difference in their surface charge, which has been challenging for conventional optical tweezers. With the atomistic understanding that enables the performance optimization and function expansion, optothermal tweezers will further their impacts.

Keywords: molecular dynamics simulation, thermophoresis, optothermal tweezers, optical tweezers, optical manipulation

References(65)

[1]
J. L. Killian,; F. Ye,; M. D. Wang, Optical tweezers: A force to be reckoned with. Cell 2018, 175, 1445-1448.
[2]
P. R. Zhang,; C. Y. Chen,; F. Guo,; J. Philippe,; Y. Y. Gu,; Z. H. Tian,; H. Bachman,; L. Q. Ren,; S. J. Yang,; Z. W. Zhong, et al. Contactless, programmable acoustofluidic manipulation of objects on water. Lab Chip 2019, 19, 3397-3404.
[3]
P. R. Zhang,; C. Y. Chen,; X. Y. Su,; J. Mai,; Y. Y. Gu,; Z. H. Tian,; H. D. Zhu,; Z. W. Zhong,; H. Fu,; S. J. Yang, et al. Acoustic streaming vortices enable contactless, digital control of droplets. Sci. Adv. 2020, 6, eaba0606.
[4]
M. J. Crane,; E. P. Pandres,; E. J. Davis,; V. C. Holmberg,; P. J. Pauzauskie, Optically oriented attachment of nanoscale metal-semiconductor heterostructures in organic solvents via photonic nanosoldering. Nat. Commun. 2019, 10, 4942.
[5]
A. Ashkin,; J. M. Dziedzic,; J. E. Bjorkholm,; S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288-290.
[6]
O. Ilic,; H. A. Atwater, Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects. Nat. Photonics 2019, 13, 289-295.
[7]
D. G. Grier, A revolution in optical manipulation. Nature 2003, 424, 810-816.
[8]
M. B. Rasmussen,; L. B. Oddershede,; H. Siegumfeldt, Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria. Appl. Environ. Microbiol. 2008, 74, 2441-2446.
[9]
A. Babynina,; M. Fedoruk,; P. Kühler,; A. Meledin,; M. Döblinger,; T. Lohmuller, Bending gold nanorods with light. Nano Lett. 2016, 16, 6485-6490.
[10]
A. N. Grigorenko,; N. W. Roberts,; M. R. Dickinson,; Y. Zhang, Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2008, 2, 365-370.
[11]
Y. X. Zheng,; J. Ryan,; P. Hansen,; Y. T. Cheng,; T. J. Lu,; L. Hesselink, Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps. Nano Lett. 2014, 14, 2971-2976.
[12]
L. H. Lin,; E. H. Hill,; X. L. Peng,; Y. B. Zheng, Optothermal manipulations of colloidal particles and living cells. Acc. Chem. Res. 2018, 51, 1465-1474.
[13]
L. H. Lin,; M. S. Wang,; X. L. Peng,; E. N. Lissek,; Z. M. Mao,; L. Scarabelli,; E. Adkins,; S. Coskun,; H. E. Unalan,; B. A. Korgel, et al. Opto-thermoelectric nanotweezers. Nat. Photonics 2018, 12, 195-201.
[14]
L. H. Lin,; J. L. Zhang,; X. L. Peng,; Z. L. Wu,; A. C. H. Coughlan,; Z. M. Mao,; M. A. Bevan,; Y. B. Zheng, Opto-thermophoretic assembly of colloidal matter. Sci. Adv. 2017, 3, e1700458.
[15]
L. H. Lin,; X. L. Peng,; X. L. Wei,; Z. M. Mao,; C. Xie,; Y. B. Zheng, Thermophoretic tweezers for low-power and versatile manipulation of biological cells. ACS Nano 2017, 11, 3147-3154.
[16]
E. H. Hill,; J. G. Li,; L. H. Lin,; Y. R. Liu,; Y. B. Zheng, Opto-thermophoretic attraction, trapping, and dynamic manipulation of lipid vesicles. Langmuir 2018, 34, 13252-13262.
[17]
L. H. Lin,; X. L. Peng,; M. S. Wang,; L. Scarabelli,; Z. M. Mao,; L. M. Liz-Marzan,; M. F. Becker,; Y. B. Zheng, Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 2016, 10, 9659-9668.
[18]
L. H. Lin,; X. L. Peng,; Y. B. Zheng, Reconfigurable opto-thermoelectric printing of colloidal particles. Chem. Commun. 2017, 53, 7357-7360.
[19]
L. H. Lin,; P. S. Kollipara,; Y. B. Zheng, Digital manufacturing of advanced materials: Challenges and perspective. Mater. Today 2019, 28, 49-62.
[20]
L. H. Lin,; S. Lepeshov,; A. Krasnok,; T. Z. Jiang,; X. L. Peng,; B. A. Korgel,; A. Alù,; Y. B. Zheng, All-optical reconfigurable chiral meta-molecules. Mater. Today 2019, 25, 10-20.
[21]
H. Brenner, Elementary kinematical model of thermal diffusion in liquids and gases. Phys. Rev. E 2006, 74, 036306.
[22]
D. Lüsebrink,; M. C. Yang,; M. Ripoll, Thermophoresis of colloids by mesoscale simulations. J. Phys. Condens Matter 2012, 24, 284132.
[23]
S. A. Putnam,; D. G. Cahill, Transport of nanoscale latex spheres in a temperature gradient. Langmuir 2005, 21, 5317-5323.
[24]
S. A. Putnam,; D. G. Cahill,; G. C. L. Wong, Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles. Langmuir 2007, 23, 9221-9228.
[25]
F. Bresme,; B. Hafskjold,; I. Wold, Nonequilibrium molecular dynamics study of heat conduction in ionic systems. J. Phys. Chem. 1996, 100, 1879-1888.
[26]
S. Di Lecce,; F. Bresme, Thermal polarization of water influences the thermoelectric response of aqueous solutions. J. Phys. Chem. B 2018, 122, 1662-1668.
[27]
D. G. Leaist,; L. Hao, Very large thermal separations for polyelectrolytes in salt solutions. J. Chem. Soc., Faraday Trans. 1994, 90, 1909-1911.
[28]
M. Reichl,; M. Herzog,; A. Götz,; D. Braun, Why charged molecules move across a temperature gradient: The role of electric fields. Phys. Rev. Lett. 2014, 112, 198101.
[29]
A. Würger, Transport in charged colloids driven by thermoelectricity. Phys. Rev. Lett. 2008, 101, 108302.
[30]
A. Majee,; A. Würger, Thermocharge of a hot spot in an electrolyte solution. Soft Matter 2013, 9, 2145-2153.
[31]
D. Vigolo,; R. Rusconi,; H. A. Stone,; R. Piazza, Thermophoresis: Microfluidics characterization and separation. Soft Matter 2010, 6, 3489-3493.
[32]
A. L. Sehnem,; A. M. Figueiredo Neto,; R. Aquino,; A. F. C. Campos,; F. A. Tourinho,; J. Depeyrot, Temperature dependence of the Soret coefficient of ionic colloids. Phys. Rev. E 2015, 92, 042311.
[33]
Y. R. Liu,; L. H. Lin,; B. Bangalore Rajeeva,; J. W. Jarrett,; X. T. Li,; X. L. Peng,; P. Kollipara,; K. Yao,; D. Akinwande,; A. K. Dunn, et al. Nanoradiator-mediated deterministic opto-thermoelectric manipulation. ACS Nano 2018, 12, 10383-10392.
[34]
L. H. Lin,; X. L. Peng,; Z. M. Mao,; X. L. Wei,; C. Xie,; Y. B. Zheng, Interfacial-entropy-driven thermophoretic tweezers. Lab Chip 2017, 17, 3061-3070.
[35]
F. Bresme,; A. Lervik,; D. Bedeaux,; S. Kjelstrup, Water polarization under thermal gradients. Phys. Rev. Lett. 2008, 101, 020602.
[36]
S. L. Zhang,; J. Juvert,; J. M. Cooper,; S. L. Neale, Manipulating and assembling metallic beads with optoelectronic tweezers. Sci. Rep. 2016, 6, 32840.
[37]
C. Witte,; J. Reboud,; J. M. Cooper,; S. L. Neale, Channel integrated optoelectronic tweezer chip for microfluidic particle manipulation. J. Micromech. Microeng. 2020, 30, 045004.
[38]
D. Zhao,; H. Wang,; Z. U. Khan,; J. C. Chen,; R. Gabrielsson,; M. P. Jonsson,; M. Berggren,; X. Crispin, Ionic thermoelectric supercapacitors. Energy Environ. Sci. 2016, 9, 1450-1457.
[39]
A. Würger, Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 2010, 73, 126601.
[40]
A. P. Bregulla,; A. Würger,; K. Günther,; M. Mertig,; F. Cichos, Thermo-osmotic flow in thin films. Phys. Rev. Lett. 2016, 116, 188303.
[41]
J. Gargiulo,; T. Brick,; I. L. Violi,; F. C. Herrera,; T. Shibanuma,; P. Albella,; F. G. Requejo,; E. Cortés,; S. A. Maier,; F. D. Stefani, Understanding and reducing photothermal forces for the fabrication of au nanoparticle dimers by optical printing. Nano Lett. 2017, 17, 5747-5755.
[42]
R. Underwood,; J. Tomlinson-Phillips,; D. Ben-Amotz, Are long-chain alkanes hydrophilic? J. Phys. Chem. B 2010, 114, 8646-8651.
[43]
G. Guthrie, Jr.; J. N. Wilson,; V. Schomaker, Theory of the thermal diffusion of electrolytes in a clusius column. J. Chem. Phys. 1949, 17, 310-313.
[44]
P. S. Kollipara,; L. H Lin,; Y. B. Zheng, Thermo-electro-mechanics at individual particles in complex colloidal systems. J. Phys. Chem. C 2019, 123, 21639-21644.
[45]
K. Ohsawa,; M. Murata,; H. Ohshima, Zeta potential and surface charge density of polystyrene-latex; comparison with synaptic vesicle and brush border membrane vesicle. Colloid Polym. Sci. 1986, 264, 1005-1009.
[46]
P. J. Scales,; F. Grieser,; T. W. Healy,; L. R. White,; D. Y. C. Chan, Electrokinetics of the silica-solution interface: A flat plate streaming potential study. Langmuir 1992, 8, 965-974.
[47]
R. Williams,; A. M. Goodman, Wetting of thin layers of SiO2 by water. Appl. Phys. Lett. 1974, 25, 531-532.
[48]
D. M. Huang,; C. Cottin-Bizonne,; C. Ybert,; L. Bocquet, Ion-specific anomalous electrokinetic effects in hydrophobic nanochannels. Phys. Rev. Lett. 2007, 98, 177801.
[49]
F. Römer,; Z. L. Wang,; S. Wiegand,; F. Bresme, Alkali halide solutions under thermal gradients: Soret coefficients and heat transfer mechanisms. J. Phys. Chem. B 2013, 117, 8209-8222.
[50]
H. D. Wang,; S. Q. Hu,; K. Takahashi,; X. Zhang,; H. Takamatsu,; J. Chen, Experimental study of thermal rectification in suspended monolayer graphene. Nat. Commun. 2017, 8, 15843.
[51]
D. K. Ma,; H. R. Ding,; X. M. Wang,; N. Yang,; X. Zhang, The unexpected thermal conductivity from graphene disk, carbon nanocone to carbon nanotube. Int. J. Heat Mass Transfer 2017, 108, 940-944.
[52]
H. Faxen, Die bewegung einer starren kugel langs der achse eines mit zaher flussigkeit gefullten rohres. Ark. Mat., Astron. Fys. 1923, 17, 1-28.
[53]
N. Takeyama,; K. Nakashima, Proportionality of intrinsic heat of transport to standard entropy of hydration for aqueous ions. J. Solution Chem. 1988, 17, 305-325.
[54]
A. Würger, Is Soret equilibrium a non-equilibrium effect? Comptes Rendus Mécanique 2013, 341, 438-448.
[55]
M. P. MacDonald,; G. C. Spalding,; K. Dholakia, Microfluidic sorting in an optical lattice. Nature 2003, 426, 421-424.
[56]
E. Flores-Flores,; S. A. Torres-Hurtado,; R. Páez,; U. Ruiz,; G. Beltrán-Pérez,; S. L. Neale,; J. C. Ramirez-San-Juan,; R. Ramos-Garcia, Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis. Biomed. Opt. Express 2015, 6, 4079-4087.
[57]
J. J. Chen,; Z. W. Kang,; S. K. Kong,; H. P. Ho, Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Opt. Lett. 2015, 40, 3926-3929.
[58]
D. Braun,; A. Libchaber, Trapping of DNA by thermophoretic depletion and convection. Phys. Rev. Lett. 2002, 89, 188103.
[59]
H. J. C. Berendsen,; J. R. Grigera,; T. P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269-6271.
[60]
H. R. Ding,; G. L. Peng,; S. Q. Mo,; D. K. Ma,; S. W. Sharshir,; N. Yang, Ultra-fast vapor generation by a graphene nano-ratchet: A theoretical and simulation study. Nanoscale 2017, 9, 19066-19072.
[61]
W. D. Cornell,; P. Cieplak,; C. I. Bayly,; I. R. Gould,; K. M. Merz,; D. M. Ferguson,; D. C. Spellmeyer,; T. Fox,; J. W. Caldwell,; P. A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197.
[62]
X. Sui,; H. R. Ding,; Z. W. Yuan,; C. F. Leong,; K. Goh,; W. Li,; N. Yang,; D. M. D'Alessandro,; Y. Chen, The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon 2019, 148, 277-289.
[63]
S. Pal,; B. Bagchi,; S. Balasubramanian, Hydration layer of a cationic micelle, C10TAB: Structure, rigidity, slow reorientation, hydrogen bond lifetime, and solvation dynamics. J. Phys. Chem. B 2005, 109, 12879-12890.
[64]
D. E. Smith,; L. X. Dang, Computer simulations of NaCl association in polarizable water. J. Chem. Phys. 1994, 100, 3757-3766.
[65]
J. C. Chai,; S. Y. Liu,; X. N. Yang, Molecular dynamics simulation of wetting on modified amorphous silica surface. Appl. Surf. Sci. 2009, 255, 9078-9084.
Video
12274_2020_3087_MOESM1_ESM.mp4
12274_2020_3087_MOESM2_ESM.mp4
12274_2020_3087_MOESM3_ESM.mp4
12274_2020_3087_MOESM4_ESM.mp4
12274_2020_3087_MOESM5_ESM.mp4
12274_2020_3087_MOESM6_ESM.mp4
12274_2020_3087_MOESM7_ESM.mp4
12274_2020_3087_MOESM8_ESM.mp4
12274_2020_3087_MOESM9_ESM.mp4
File
12274_2020_3087_MOESM10_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 June 2020
Revised: 22 August 2020
Accepted: 03 September 2020
Published: 05 January 2021
Issue date: January 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors acknowledge the financial support of the National Science Foundation (No. NSF-CMMI-1761743), the National Aeronautics and Space Administration Early Career Faculty Award (No. 80NSSC17K0520), and the National Institute of General Medical Sciences of the National Institutes of Health (No. DP2GM128446). L. H. L. acknowledges financial support from the National Natural Science Foundation of China (No. 62075111) and the State Key Laboratory of Precision Measurement Technology and Instruments. The authors are grateful to Prof. Brian A. Korgel and Dr. Taizhi Jiang for providing Si particles. They also thank Yaoran Liu, Jingang Li, Kan Yao and Zhihan Chen for useful discussions.

Return