Journal Home > Volume 14 , Issue 1

Metal-organic framework (MOF) nanosheets and covalent organic framework (COF) nanosheets as emerging porous materials nanosheets have captured increasing attention owing to their attractive properties originating from the advantages of large lateral size, ultrathin thickness, tailorable physiochemical environment, flexibility and highly accessible active sites on surface, and the applications of them have been explored in a wide range of fields. Although MOF and COF nanosheets own many similar properties, their applications in various fields show significant differences, probably due to their different compositions and bonding modes. Hence, we summarize the recent progress of MOF and COF nanosheets by comparative analysis on their advantages and limitations in synthesis and applications, providing a more profound and full-scale perspective for researchers or beginners to understand this field. Herein, the categories of preparation methods of MOF and COF nanosheets are firstly discussed, including top-down and bottom-up methods. Secondly, the applications of MOF and COF nanosheets for separation, catalysis, sensing and energy storage are summarized. Finally, based on current achievements, we put forward our personal insights into the challenges and outlooks on the synthesis, characterizations, and promising applications for future research of MOF and COF nanosheets.


menu
Abstract
Full text
Outline
About this article

Emerging porous nanosheets: From fundamental synthesis to promising applications

Show Author's information Yun FanJia ZhangYu ShenBing ZhengWeina Zhang( )Fengwei Huo( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China

Abstract

Metal-organic framework (MOF) nanosheets and covalent organic framework (COF) nanosheets as emerging porous materials nanosheets have captured increasing attention owing to their attractive properties originating from the advantages of large lateral size, ultrathin thickness, tailorable physiochemical environment, flexibility and highly accessible active sites on surface, and the applications of them have been explored in a wide range of fields. Although MOF and COF nanosheets own many similar properties, their applications in various fields show significant differences, probably due to their different compositions and bonding modes. Hence, we summarize the recent progress of MOF and COF nanosheets by comparative analysis on their advantages and limitations in synthesis and applications, providing a more profound and full-scale perspective for researchers or beginners to understand this field. Herein, the categories of preparation methods of MOF and COF nanosheets are firstly discussed, including top-down and bottom-up methods. Secondly, the applications of MOF and COF nanosheets for separation, catalysis, sensing and energy storage are summarized. Finally, based on current achievements, we put forward our personal insights into the challenges and outlooks on the synthesis, characterizations, and promising applications for future research of MOF and COF nanosheets.

Keywords: two-dimensional (2D) nanomaterials, metal-organic framework (MOF) nanosheets, covalent organic framework (COF) nanosheets, top-down methods, bottom-up methods

References(176)

[1]
F. Bonaccorso,; L. Colombo,; G. H. Yu,; M. Stoller,; V. Tozzini,; A. C. Ferrari,; R. S. Ruoff,; V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.
[2]
C. L. Tan,; X. H. Cao,; X. J. Wu,; Q. Y. He,; J. Yang,; X. Zhang,; J. Z. Chen,; W. Zhao,; S. K. Han,; G. H. Nam, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[3]
J. Y. Zhang,; H. L. Chen,; M. Zhao,; G. T. Liu,; J. Wu, 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019-2034.
[4]
Z. W. Fang,; Q. Y. Xing,; D. Fernandez,; X. Zhang,; G. H. Yu, A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179-1190.
[5]
G. Fiori,; F. Bonaccorso,; G. Iannaccone,; T. Palacios,; D. Neumaier,; A. Seabaugh,; S. K. Banerjee,; L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.
[6]
P. Joensen,; R. F. Frindt,; S. R. Morrison, Single-layer MOS2. Mater. Res. Bull. 1986, 21, 457-461.
[7]
M. M. J. Treacy,; S. B. Rice,; A. J. Jacobson,; J. T. Lewandowski, Electron microscopy study of delamination in dispersions of the perovskite-related layered phases K[Ca2Nan-3NbnO3n-1]: Evidence for single-layer formation. Chem. Mater. 1990, 2, 279-286.
[8]
R. H. Tredgold, Spreading it out. Nature 1991, 354, 120.
[9]
M. Adachi-Pagano,; C. Forano,; J. P. Besse, Delamination of layered double hydroxides by use of surfactants. Chem. Commun. 2000, 91-92.
[10]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[11]
L. Grill,; M. Dyer,; L. Lafferentz,; M. Persson,; M. V. Peters,; S. Hecht, Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2007, 2, 687-691.
[12]
D. Pacilé,; J. C. Meyer,; Ç. Ö. Girit,; A. Zettl, The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 92, 133107.
[13]
R. B. Nielsen,; K. O. Kongshaug,; H. Fjellvåg, Delamination, synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4). J. Mater. Chem. 2008, 18, 1002-1007.
[14]
M. Naguib,; M. Kurtoglu,; V. Presser,; J. Lu,; J. J. Niu,; M. Heon,; L. Hultman,; Y. Gogotsi,; M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
[15]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[16]
J. Shim,; H. Y. Park,; D. H. Kang,; J. O. Kim,; S. H. Jo,; Y. Park,; J. H. Park, Electronic and optoelectronic devices based on two-dimensional materials: From fabrication to application. Adv. Electron. Mater. 2017, 3, 1600364.
[17]
G. H. Jeong,; S. P. Sasikala,; T. Yun,; G. Y. Lee,; W. J. Lee,; S. O. Kim, Nanoscale assembly of 2D materials for energy and environmental applications. Adv. Mater. 2020, 32, 1907006.
[18]
B. Akram,; W. X. Shi,; H. Zhang,; S. Ullah,; M. Khurram,; X. Wang, Free-standing CoO-POM Janus-like ultrathin nanosheets. Angew. Chem., Int. Ed. 2020, 59, 8497-8501.
[19]
H. Yang,; J. Bright,; S. Kasani,; P. Zheng,; T. Musho,; B. L. Chen,; L. Huang,; N. Q. Wu, Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643-650.
[20]
Y. F. Zhu,; X. Y. Qiu,; S. L. Zhao,; J. Guo,; X. F. Zhang,; W. S. Zhao,; Y. N. Shi,; Z. Y. Tang, Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928-1932.
[21]
J. R. Li,; R. J. Kuppler,; H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477-1504.
[22]
L. E. Kreno,; K. Leong,; O. K. Farha,; M. Allendorf,; R. P. van Duyne,; J. T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-1125.
[23]
Z. W. Lei,; J. L. Shen,; W. D. Zhang,; Q. R. Wang,; J. Wang,; Y. H. Deng,; C. Y. Wang, Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Res. 2020, 13, 2259-2267.
[24]
H. Furukawa,; O. M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875-8883.
[25]
S. Y. Ding,; W. Wang, Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548-568.
[26]
H. Furukawa,; K. E. Cordova,; M. O’Keeffe,; O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[27]
A. P. Cote,; A. I. Benin,; N. W. Ockwig,; M. O’Keeffe,; A. J. Matzger,; O. M. Yaghi, Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-1170.
[28]
J. Wang,; N. Li,; Y. X. Xu,; H. Pang, Two-dimensional MOF and COF nanosheets: Synthesis and applications in electrochemistry. Chem.—Eur. J. 2020, 26, 6402-6422.
[29]
H. L. Zhu,; D. X. Liu, The synthetic strategies of metal-organic framework membranes, films and 2D MOFs and their applications in devices. J. Mater. Chem. A 2019, 7, 21004-21035.
[30]
S. Haldar,; K. Roy,; S. Nandi,; D. Chakraborty,; D. Puthusseri,; Y. Gawli,; S. Ogale,; R. Vaidhyanathan, High and Reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv. Energy Mater. 2018, 8, 1702170.
[31]
M. T. Zhao,; Y. Huang,; Y. W. Peng,; Z. Q. Huang,; Q. L. Ma,; H. Zhang, Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267-6295.
[32]
J. G. Duan,; Y. S. Li,; Y. C. Pan,; N. Behera,; W. Q. Jin, Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev. 2019, 395, 25-45.
[33]
D. Rodríguez-San-Miguel,; C. Montoro,; F. Zamora, Covalent organic framework nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2020, 49, 2291-2302.
[34]
J. Li,; X. C. Jing,; Q. Q. Li,; S. W. Li,; X. Gao,; X. Feng,; B. Wang, Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565-3604.
[35]
M. T. Zhao,; Q. P. Lu,; Q. L. Ma,; H. Zhang, Two-dimensional metal-organic framework nanosheets. Small Methods 2017, 1, 1600030.
[36]
V. Nicolosi,; M. Chhowalla,; M. G. Kanatzidis,; M. S. Strano,; J. N. Coleman, Liquid exfoliation of layered materials. Science 2013, 340, 1226419.
[37]
A. Mukhopadhyay,; V. K. Maka,; G. Savitha,; J. N. Moorthy, Photochromic 2D metal-organic framework nanosheets (MONs): Design, synthesis, and functional MON-ormosil composite. Chem 2018, 4, 1059-1079.
[38]
P. Amo-Ochoa,; L. Welte,; R. González-Prieto,; P. J. Sanz Miguel,; C. J. Gómez-Garcia,; E. Mateo-Martí,; S. Delgado,; J. Gómez-Herrero,; F. Zamora, Single layers of a multifunctional laminar Cu(I, II) coordination polymer. Chem. Commun. 2010, 46, 3262-3264.
[39]
C. L. Zhang,; S. M. Zhang,; Y. H. Yan,; F. Xia,; A. N. Huang,; Y. Y. Xian, Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6-trinitrophenol. ACS Appl. Mater. Interfaces 2017, 9, 13415-13421.
[40]
A. Abhervé,; S. Mañas-Valero,; M. Clemente-León,; E. Coronado, Graphene related magnetic materials: Micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ molecules. Chem. Sci. 2015, 6, 4665-4673.
[41]
S. Wang,; Q. Y. Wang,; P. P. Shao,; Y. Z. Han,; X. Gao,; L. Ma,; S. Yuan,; X. J. Ma,; J. W. Zhou,; X. Feng, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 2017, 139, 4258-4261.
[42]
Y. J. Ding,; Y. P. Chen,; X. L. Zhang,; L. Chen,; Z. H. Dong,; H. L. Jiang,; H. X. Xu,; H. C. Zhou, Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 2017, 139, 9136-9139.
[43]
M. A. Khayum,; S. Kandambeth,; S. Mitra,; S. B. Nair,; A. Das,; S. S. Nagane,; R. Mukherjee,; R. Banerjee, Chemically delaminated free-standing ultrathin covalent organic nanosheets. Angew. Chem., Int. Ed. 2016, 55, 15604-15608.
[44]
Y. Yeon,; M. Y. Lee,; S. Y. Kim,; J. Lee,; B. Kim,; B. Park,; I. In, Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber. Nanotechnology 2015, 26, 375602.
[45]
H. S. Quah,; L. T. Ng,; B. Donnadieu,; G. K. Tan,; J. J. Vittal, Molecular scissoring: Facile 3D to 2D conversion of lanthanide metal organic frameworks via solvent exfoliation. Inorg. Chem. 2016, 55, 10851-10854.
[46]
K. Wang,; Z. Zhang,; L. Lin,; J. Chen,; K. Hao,; H. Y. Tian,; X. S. Chen, Covalent organic nanosheets integrated heterojunction with two strategies to overcome hypoxic-tumor photodynamic therapy. Chem. Mater. 2019, 31, 3313-3323.
[47]
G. H. Yu,; R. Q. Li,; Z. H. Leng,; S. C. Gan, A 2D zinc-organic network being easily exfoliated into isolated sheets. J. Mol. Struct. 2016, 1117, 135-139.
[48]
W. R. Cui,; C. R. Zhang,; W. Jiang,; R. P. Liang,; J. D. Qiu, Covalent organic framework nanosheets for fluorescence sensing via metal coordination. ACS Appl. Nano Mater. 2019, 2, 5342-5349.
[49]
J. R. Ran,; J. T. Qu,; H. P. Zhang,; T. Wen,; H. L. Wang,; S. M. Chen,; L. Song,; X. L. Zhang,; L. Q. Jing,; R. K. Zheng, et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 2019, 9, 1803402.
[50]
J. A. Foster,; S. Henke,; A. Schneemann,; R. A. Fischer,; A. K. Cheetham, Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets. Chem. Commun. 2016, 52, 10474-10477.
[51]
P. Z. Li,; Y. Maeda,; Q. Xu, Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 2011, 47, 8436-8438.
[52]
P. J. Saines,; J. C. Tan,; H. H. M. Yeung,; P. T. Barton,; A. K. Cheetham, Layered inorganic-organic frameworks based on the 2,2-dimethylsuccinate ligand: Structural diversity and its effect on nanosheet exfoliation and magnetic properties. Dalton Trans. 2012, 41, 8585-8593.
[53]
P. J. Beldon,; S. Tominaka,; P. Singh,; T. S. Dasgupta,; E. G. Bithell,; A. K. Cheetham, Layered structures and nanosheets of pyrimidinethiolate coordination polymers. Chem. Commun. 2014, 50, 3955-3957.
[54]
K. He,; Z. Cao,; R. R. Liu,; Y. Miao,; H. Y. Ma,; Y. Ding, In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 9, 1856-1865.
[55]
I. Berlanga,; M. Luisa Ruiz-González,; J. María González-Calbet,; J. L. G. Fierro,; R. Mas-Ballesté,; F. Zamora, Delamination of layered covalent organic frameworks. Small 2011, 7, 1207-1211.
[56]
D. N. Bunck,; W. R. Dichtel, Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952-14955.
[57]
C. Y. Li,; C. Wu,; B. Q. Zhang, Enhanced CO2/CH4 separation performances of mixed matrix membranes incorporated with two-dimensional Ni-based MOF nanosheets. ACS Sustainable Chem. Eng. 2020, 8, 642-648.
[58]
M. R. Rao,; Y. Fang,; S. De Feyter,; D. F. Perepichka, Conjugated covalent organic frameworks via michael addition-elimination. J. Am. Chem. Soc. 2017, 139, 2421-2427.
[59]
G. H. Liu,; Z. Y. Jiang,; H. Yang,; C. D. Li,; H. J. Wang,; M. D. Wang,; Y. M. Song,; H. Wu,; F. S. Pan, High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J. Membr. Sci. 2019, 572, 557-566.
[60]
X. R. Wang,; C. L. Chi,; K. Zhang,; Y. H. Qian,; K. M. Gupta,; Z. X. Kang,; J. W. Jiang,; D. Zhao, Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8, 14460.
[61]
M. J. Cliffe,; E. Castillo-Martinez,; Y. Wu,; J. Lee,; A. C. Forse,; F. C. N. Firth,; P. Z. Moghadam,; D. Fairen-Jimenez,; M. W. Gaultois,; J. A. Hill, et al. Metal-organic nanosheets formed via defect-mediated transformation of a hafnium metal-organic framework. J. Am. Chem. Soc. 2017, 139, 5397-5404.
[62]
Y. Peng,; Y. S. Li,; Y. J. Ban,; H. Jin,; W. M. Jiao,; X. L. Liu,; W. S. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356-1359.
[63]
S. Chandra,; S. Kandambeth,; B. P. Biswal,; B. Lukose,; S. M. Kunjir,; M. Chaudhary,; R. Babarao,; T. Heine,; R. Banerjee, Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135, 17853-17861.
[64]
H. S. Wang,; J. Li,; J. Y. Li,; K. Wang,; Y. Ding,; X. H. Xia, Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Mater. 2017, 9, e354.
[65]
J. Huang,; Y. Li,; R. K. Huang,; C. T. He,; L. Gong,; Q. Hu,; L. S. Wang,; Y. T. Xu,; X. Y. Tian,; S. Y. Liu, et al. Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 4632-4636.
[66]
Y. G. Zhang,; M. X. Tan,; H. Li,; Y. G. Zheng,; S. J. Gao,; H. Zhang,; J. Y. Ying, Mesoscopic organic nanosheets peeled from stacked 2D covalent frameworks. Chem. Commun. 2011, 47, 7365-7367.
[67]
S. Mitra,; H. S. Sasmal,; T. Kundu,; S. Kandambeth,; K. Illath,; D. Díaz Díaz,; R. Banerjee, Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc. 2017, 139, 4513-4520.
[68]
X. D. Chen,; Y. S. Li,; L. Wang,; Y. Xu,; A. M. Nie,; Q. Q. Li,; F. Wu,; W. W. Sun,; X. Zhang,; R. Vajtai, et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 2019, 31, 1901640.
[69]
W. J. Zhu,; Y. Yang,; Q. T. Jin,; Y. Chao,; L. L. Tian,; J. J. Liu,; Z. L. Dong,; Z. Liu, Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307-1312.
[70]
A. J. Clough,; J. W. Yoo,; M. H. Mecklenburg,; S. C. Marinescu, Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J. Am. Chem. Soc. 2015, 137, 118-121.
[71]
N. Lahiri,; N. Lotfizadeh,; R. Tsuchikawa,; V. V. Deshpande,; J. Louie, Hexaaminobenzene as a building block for a family of 2D coordination polymers. J. Am. Chem. Soc. 2017, 139, 19-22.
[72]
N. A. A. Zwaneveld,; R. Pawlak,; M. Abel,; D. Catalin,; D. Gigmes,; D. Bertin,; L. Porte, Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 2008, 130, 6678-6679.
[73]
J. F. Dienstmaier,; D. D. Medina,; M. Dogru,; P. Knochel,; T. Bein,; W. M. Heckl,; M. Lackinger, Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 2012, 6, 7234-7242.
[74]
Z. F. Wang,; Q. Yu,; Y. B. Huang,; H. D. An,; Y. Zhao,; Y. F. Feng,; X. Li,; X. L. Shi,; J. J. Liang,; F. S. Pan, et al. PolyCOFs: A new class of freestanding responsive covalent organic framework membranes with high mechanical performance. ACS Cent. Sci. 2019, 5, 1352-1359.
[75]
K. J. Liu,; H. Y. Qi,; R. H. Dong,; R. Shivhare,; M. Addicoat,; T. Zhang,; H. Sahabudeen,; T. Heine,; S. Mannsfeld,; U. Kaiser, et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 2019, 11, 994-1000.
[76]
T. Kambe,; R. Sakamoto,; K. Hoshiko,; K. Takada,; M. Miyachi,; J. H. Ryu,; S. Sasaki,; J. Kim,; K. Nakazato,; M. Takata, et al. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013, 135, 2462-2465.
[77]
W. Y. Dai,; F. Shao,; J. Szczerbiński,; R. McCaffrey,; R. Zenobi,; Y. H. Jin,; A. D. Schlüter,; W. Zhang, Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem., Int. Ed. 2016, 55, 213-217.
[78]
R. Sakamoto,; K. Hoshiko,; Q. Liu,; T. Yagi,; T. Nagayama,; S. Kusaka,; M. Tsuchiya,; Y. Kitagawa,; W. Y. Wong,; H. Nishihara, A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat. Commun. 2015, 6, 6713.
[79]
T. Rodenas,; I. Luz,; G. Prieto,; B. Seoane,; H. Miro,; A. Corma,; F. Kapteijn,; F. X. Llabrés i Xamena,; J. Gascon, Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48-55.
[80]
D. Zhou,; X. Y. Tan,; H. M. Wu,; L. H. Tian,; M. Li, Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem., Int. Ed. 2019, 58, 1376-1381.
[81]
T. Faury,; S. Clair,; M. Abel,; F. Dumur,; D. Gigmes,; L. Porte, Sequential linking to control growth of a surface covalent organic framework. J. Phys. Chem. C 2012, 116, 4819-4823.
[82]
S. Spitzer,; A. Rastgoo-Lahrood,; K. Macknapp,; V. Ritter,; S. Sotier,; W. M. Heckl,; M. Lackinger, Solvent-free on-surface synthesis of boroxine COF monolayers. Chem. Commun. 2017, 53, 5147-5150.
[83]
A. C. Marele,; R. Mas-Ballesté,; L. Terracciano,; J. Rodríguez-Fernandez,; I. Berlanga,; S. S. Alexandre,; R. Otero,; J. M. Gallego,; F. Zamora,; J. M. Gomez-Rodriguez, Formation of a surface covalent organic framework based on polyester condensation. Chem. Commun. 2012, 48, 6779-6781.
[84]
C. Chen,; T. Joshi,; H. F. Li,; A. D. Chavez,; Z. Pedramrazi,; P. N. Liu,; H. Li,; W. R. Dichtel,; J. L. Bredas,; M. F. Crommie, Local electronic structure of a single-layer porphyrin-containing covalent organic framework. ACS Nano 2018, 12, 385-391.
[85]
J. Y. Yue,; X. H. Liu,; B. Sun,; D. Wang, The on-surface synthesis of imine-based covalent organic frameworks with non-aromatic linkage. Chem. Commun. 2015, 51, 14318-14321.
[86]
W. L. Dong,; L. Wang,; H. M. Ding,; L. Zhao,; D. Wang,; C. Wang,; L. J. Wan, Substrate orientation effect in the on-surface synthesis of tetrathiafulvalene-integrated single-layer covalent organic frameworks. Langmuir 2015, 31, 11755-11759.
[87]
T. Joshi,; C. Chen,; H. F. Li,; C. S. Diercks,; G. Q. Wang,; P. J. Waller,; H. Li,; J. L. Bredas,; O. M. Yaghi,; M. F. Crommie, Local electronic structure of molecular heterojunctions in a single-layer 2D covalent organic framework. Adv. Mater. 2019, 31, 1805941.
[88]
L. R. Xu,; X. Zhou,; Y. X. Yu,; W. Q. Tian,; J. Ma,; S. B. Lei, Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling. ACS Nano 2013, 7, 8066-8073.
[89]
T. Tsuruoka,; S. Furukawa,; Y. Takashima,; K. Yoshida,; S. Isoda,; S. Kitagawa, Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem., Int. Ed. 2009, 48, 4739-4743.
[90]
M. T. Zhao,; Y. X. Wang,; Q. L. Ma,; Y. Huang,; X. Zhang,; J. F. Ping,; Z. C. Zhang,; Q. P. Lu,; Y. F. Yu,; H. Xu, et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372-7378.
[91]
M. Hu,; S. Ishihara,; Y. Yamauchi, Bottom-up synthesis of monodispersed single-crystalline cyano-bridged coordination polymer nanoflakes. Angew. Chem., Int. Ed. 2013, 52, 1235-1239.
[92]
J. Zhao,; M. R. Li,; J. L. Sun,; L. F. Liu,; P. P. Su,; Q. H. Yang,; C. Li, Metal-oxide nanoparticles with desired morphology inherited from coordination-polymer precursors. Chem.—Eur. J. 2012, 18, 3163-3168.
[93]
T. He,; B. Ni,; S. M. Zhang,; Y. Gong,; H. Q. Wang,; L. Gu,; J. Zhuang,; W. P. Hu,; X. Wang, Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.
[94]
Y. Jiang,; H. Q. Liu,; X. H. Tan,; L. M. Guo,; J. T. Zhang,; S. N. Liu,; Y. J. Guo,; J. Zhang,; H. F. Wang,; W. G. Chu, Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 25239-25249.
[95]
R. Y. Xu,; Y. F. Wang,; X. P. Duan,; K. D. Lu,; D. Micheroni,; A. G. Hu,; W. B. Lin, Nanoscale metal-organic frameworks for ratiometric oxygen sensing in live cells. J. Am. Chem. Soc. 2016, 138, 2158-2161.
[96]
R. H. Dai,; F. Peng,; P. F. Ji,; K. D. Lu,; C. Wang,; J. L. Sun,; W. B. Lin, Electron crystallography reveals atomic structures of metal-organic nanoplates with M123-O)83-OH)82-OH)6 (M = Zr, Hf) secondary building units. Inorg. Chem. 2017, 56, 8128-8134.
[97]
J. J. Duan,; S. Chen,; C. Zhao, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.
[98]
F. Z. Sun,; G. Wang,; Y. Q. Ding,; C. Wang,; B. B. Yuan,; Y. Q. Lin, NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.
[99]
X. K. Zhang,; H. Li,; J. Wang,; D. L. Peng,; J. D. Liu,; Y. T. Zhang, In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation. J. Membr. Sci. 2019, 581, 321-330.
[100]
J. Guo,; Y. Zhang,; Y. F. Zhu,; C. Long,; M. T. Zhao,; M. He,; X. F. Zhang,; J. W. Lv,; B. Han,; Z. Y. Tang, Ultrathin chiral metal-organic-framework nanosheets for efficient enantioselective separation. Angew. Chem., Int. Ed. 2018, 57, 6873-6877.
[101]
L. Huang,; X. P. Zhang,; Y. J. Han,; Q. Q. Wang,; Y. X. Fang,; S. J. Dong, In situ synthesis of ultrathin metal-organic framework nanosheets: A new method for 2D metal-based nanoporous carbon electrocatalysts. J. Mater. Chem. A 2017, 5, 18610-18617.
[102]
A. Pustovarenko,; M. G. Goesten,; S. Sachdeva,; M. X. Shan,; Z. Amghouz,; Y. Belmabkhout,; A. Dikhtiarenko,; T. Rodenas,; D. Keskin,; I. K. Voets, et al. Nanosheets of nonlayered aluminum metal-organic frameworks through a surfactant-assisted method. Adv. Mater. 2018, 30, 1707234.
[103]
X. S. Shi,; D. W. Ma,; F. Xu,; Z. Zhang,; Y. Wang Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chem. Sci. 2020, 11, 989-996.
[104]
B. J. Hu,; P. Y. Wu, Facile synthesis of large-area ultrathin two-dimensional supramolecular nanosheets in water. Nano Res. 2020, 13, 868-874.
[105]
Y. Y. Tian,; Q. P. Lu,; X. X. Guo,; S. Y. Wang,; Y. Gao,; L. H. Wang, Au nanoparticles deposited on ultrathin two-dimensional covalent organic framework nanosheets for in vitro and intracellular sensing. Nanoscale 2020, 12, 7776-7781.
[106]
K. W. Nam,; S. S. Park,; R. dos Reis,; V. P. Dravid,; H. Kim,; C. A. Mirkin,; J. F. Stoddart, Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 2019, 10, 4948.
[107]
Y. J. Li,; L. Lin,; M. Tu,; P. Nian,; A. J. Howarth,; O. K. Farha,; J. S. Qiu,; X. F. Zhang, Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Res. 2018, 11, 1850-1860.
[108]
C. Zhang,; B. H. Wu,; M. Q. Ma,; Z. K. Wang,; Z. K. Xu, Ultrathin metal/covalent-organic framework membranes towards ultimate separation. Chem. Soc. Rev. 2019, 48, 3811-3841.
[109]
K. Varoon,; X. Y. Zhang,; B. Elyassi,; D. D. Brewer,; M. Gettel,; S. Kumar,; J. A. Lee,; S. Maheshwari,; A. Mittal,; C. Y. Sung, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334, 72-75.
[110]
H. Li,; Z. N. Song,; X. J. Zhang,; Y. Huang,; S. G. Li,; Y. T. Mao,; H. J. Ploehn,; Y. Bao,; M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013, 342, 95-98.
[111]
P. Bernardo,; E. Drioli,; G. Golemme, Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638-4663.
[112]
R. D. Noble, Perspectives on mixed matrix membranes. J. Membr. Sci. 2011, 378, 393-397.
[113]
K. Vellingiri,; P. Kumar,; K. H. Kim, Coordination polymers: Challenges and future scenarios for capture and degradation of volatile organic compounds. Nano Res. 2016, 9, 3181-3208.
[114]
L. M. Robeson, The upper bound revisited. J. Membr. Sci. 2008, 320, 390-400.
[115]
W. F. Yong,; F. Y. Li,; Y. C. Xiao,; P. Li,; K. P. Pramoda,; Y. W. Tong,; T. S. Chung, Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. J. Membr. Sci. 2012, 407-408, 47-57.
[116]
T. Li,; Y. C. Pan,; K. V. Peinemann,; Z. P. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Membr. Sci. 2013, 425-426, 235-242.
[117]
X. Q. Li,; Z. Y. Jiang,; Y. Z. Wu,; H. Y. Zhang,; Y. D. Cheng,; R. L. Guo,; H. Wu, High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. J. Membr. Sci. 2015, 495, 72-80.
[118]
S. Kim,; T. W. Pechar,; E. Marand, Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 2006, 192, 330-339.
[119]
C. R. Mason,; M. G. Buonomenna,; G. Golemme,; P. M. Budd,; F. Galiano,; A. Figoli,; K. Friess,; V. Hynek, New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1. Polymer 2013, 54, 2222-2230.
[120]
A. F. Bushell,; M. P. Attfield,; C. R. Mason,; P. M. Budd,; Y. Yampolskii,; L. Starannikova,; A. Rebrov,; F. Bazzarelli,; P. Bernardo,; J. C. Jansen, et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 2013, 427, 48-62.
[121]
Y. D. Cheng,; X. R. Wang,; C. K. Jia,; Y. X. Wang,; L. Z. Zhai,; Q. Wang,; D. Zhao, Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 2017, 539, 213-223.
[122]
Y. P. Ying,; M. M. Tong,; S. C. Ning,; S. K. Ravi,; S. B. Peh,; S. C. Tan,; S. J. Pennycook,; D. Zhao, Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 2020, 142, 4472-4480.
[123]
B. P. Biswal,; H. D. Chaudhari,; R. Banerjee,; U. K. Kharul, Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation. Chem.—Eur. J. 2016, 22, 4695-4699.
[124]
Z. X. Kang,; Y. W. Peng,; Y. H. Qian,; D. Q. Yuan,; M. A. Addicoat,; T. Heine,; Z. G. Hu,; L. Tee,; Z. G. Guo,; D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 2016, 28, 1277-1285.
[125]
Y. Q. Su,; H. T. Xu,; J. J. Wang,; X. K. Luo,; Z. L. Xu,; K. F. Wang,; W. Z. Wang, Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO. Nano Res. 2019, 12, 625-630.
[126]
S. Ullah,; B. Akram,; H. Ali,; H. Zhang,; H. Z. Yang,; Q. D. Liu,; X. Wang, 2-Methylimidazole assisted ultrafast synthesis of carboxylate-based metal-organic framework nano-structures in aqueous medium at room temperature. Sci. Bull. 2019, 64, 1103-1109.
[127]
Q. Y. Wu,; C. X. Zhang,; K. Sun,; H. L. Jiang, Microwave-assisted synthesis and photocatalytic performance of a soluble porphyrinic MOF. Acta Chim. Sin. 2020, 78, 688-694.
[128]
L. F. Liu,; J. L. Zhang,; X. N. Tan,; B. X. Zhang,; J. B. Shi,; X. Y. Cheng,; D. X. Tan,; B. X. Han,; L. R. Zheng,; F. Y. Zhang, Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983-988.
[129]
X. B. Fu,; G. P. Yu, Covalent organic frameworks catalysts. Prog. Chem. 2016, 28, 1006-1015.
[130]
X. F. Zhang,; L. Chang,; Z. J. Yang,; Y. N. Shi,; C. Long,; J. Y. Han,; B. H. Zhang,; X. Y. Qiu,; G. D. Li,; Z. Y. Tang, Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437-440.
[131]
Y. Fu,; H. M. Zhou,; S. Yin,; L. M. Zhou, Facile synthesis of substrate supported ultrathin two-dimensional cobalt-based metal organic frameworks nanoflakes. Compos. Part A 2020, 134, 105910.
[132]
C. H. Huang,; Z. H. Guo,; X. Zheng,; X. Y. Chen,; Z. J. Xue,; S. W. Zhang,; X. Li,; B. Guan,; X. Li,; G. Q. Hu, et al. Deformable metal-organic framework nanosheets for heterogeneous catalytic reactions. J. Am. Chem. Soc. 2020, 142, 9408-9414.
[133]
W. B. Liu,; X. K. Li,; C. M. Wang,; H. H. Pan,; W. P. Liu,; K. Wang,; Q. D. Zeng,; R. M. Wang,; J. Z. Jiang, A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431-17440.
[134]
G. X. Lan,; Z. Li,; S. S. Veroneau,; Y. Y. Zhu,; Z. W. Xu,; C. Wang,; W. B. Lin, Photosensitizing metal-organic layers for efficient sunlight-driven carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 12369-12373.
[135]
L. Y. Cao,; Z. K. Lin,; F. Peng,; W. W. Wang,; R. Y. Huang,; C. Wang,; J. W. Yan,; J. Liang,; Z. M. Zhang,; T. Zhang, et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962-4966.
[136]
W. J. Shi,; L. Y. Cao,; H. Zhang,; X. Zhou,; B. An,; Z. K. Lin,; R. H. Dai,; J. F. Li,; C. Wang,; W. B. Lin, Surface modification of two-dimensional metal-organic layers creates biomimetic catalytic microenvironments for selective oxidation. Angew. Chem., Int. Ed. 2017, 56, 9704-9709.
[137]
S. He,; Y. F. Chen,; Z. C. Zhang,; B. Ni,; W. He,; X. Wang, Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures. Chem. Sci. 2016, 7, 7101-7105.
[138]
Y. Huang,; M. T. Zhao,; S. K. Han,; Z. C. Lai,; J. Yang,; C. L. Tan,; Q. L. Ma,; Q. P. Lu,; J. Z. Chen,; X. Zhang, et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102.
[139]
G. R. Cai,; M. L. Ding,; Q. Y. Wu,; H. L. Jiang, Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis. Natl. Sci. Rev. 2020, 7, 37-45.
[140]
Q. H. Yang,; C. C. Yang,; C. H. Lin,; H. L. Jiang, Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511-3515.
[141]
S. L. Zhao,; Y. Wang,; J. C. Dong,; C. T. He,; H. J. Yin,; P. F. An,; K. Zhao,; X. F. Zhang,; C. Gao,; L. J. Zhang, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.
[142]
Y. X. Xu,; B. Li,; S. S. Zheng,; P. Wu,; J. Y. Zhan,; H. G. Xue,; Q. Xu,; H. Pang, Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 22070-22076.
[143]
H. X. Zhong,; K. H. Ly,; M. C. Wang,; Y. Krupskaya,; X. C. Han,; J. C. Zhang,; J. Zhang,; V. Kataev,; B. Büchner,; I. M. Weidinger, et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677-10682.
[144]
K. M. Zhao,; S. Q. Liu,; G. Y. Ye,; X. L. Wei,; Y. K. Su,; W. W. Zhu,; Z. Zhou,; Z. He, Ultrasmall 2D CoxZn2-x(benzimidazole)4 metal-organic framework nanosheets and their derived Co nanodots@Co, N-codoped graphene for efficient oxygen reduction reaction. ChemSusChem 2020, 13, 1556-1567.
[145]
R. H. Dong,; M. Pfeffermann,; H. W. Liang,; Z. K. Zheng,; X. Zhu,; J. Zhang,; X. L. Feng Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 12058-12063.
[146]
R. H. Dong,; Z. K. Zheng,; D. C. Tranca,; J. Zhang,; N. Chandrasekhar,; S. H. Liu,; X. D. Zhuang,; G. Seifert,; X. L. Feng Immobilizing molecular metal dithiolene-diamine complexes on 2D metal-organic frameworks for electrocatalytic H2 production. Chem.—Eur. J. 2017, 23, 2255-2260.
[147]
B. C. Patra,; S. Khilari,; R. N. Manna,; S. Mondal,; D. Pradhan,; A. Pradhan,; A. Bhaumik, A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 2017, 7, 6120-6127.
[148]
Q. Li,; L. N. Zhang,; X. M. Tao,; X. Ding, Review of flexible temperature sensing networks for wearable physiological monitoring. Adv. Healthc. Mater. 2017, 6, 1601371.
[149]
J. Li,; R. R. Bao,; J. Tao,; Y. Y. Peng,; C. F. Pan, Recent progress in flexible pressure sensor arrays: From design to applications. J. Mater. Chem. C 2018, 6, 11878-11892.
[150]
D Kukkar,; K Vellingiri,; R Kaur,; S. K. Bhardwaj,; A. Deep,; K. H. Kim, Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Res. 2019, 12, 225-246.
[151]
P. D. Beer,; P. A. Gale, Anion recognition and sensing: The state of the art and future perspectives. Angew. Chem., Int. Ed. 2001, 40, 486-516.
[152]
Z. Q. Wang,; S. S. Wu,; J. Wang,; A. L. Yu,; G. Wei, Carbon nanofiber-based functional nanomaterials for sensor applications. Nanomaterials 2019, 9, 1045.
[153]
F. Y. Yi,; D. X. Chen,; M. K. Wu,; L. Han,; H. L. Jiang, Chemical sensors based on metal-organic frameworks. Chempluschem 2016, 81, 675-690.
[154]
N. Sahiner,; S. Demirci, The use of covalent organic frameworks as template for conductive polymer synthesis and their sensor applications. J. Porous Mater. 2019, 26, 481-492.
[155]
Q. M. Qiu,; H. Y. Chen,; Z. H. You,; Y. Y. Feng,; X. Wang,; Y. X. Wang,; Y. B. Ying, Shear exfoliated metal-organic framework nanosheet-enabled flexible sensor for real-time monitoring of superoxide anion. ACS Appl. Mater. Interfaces 2020, 12, 5429-5436.
[156]
L. J. Han,; D. Zheng,; S. G. Chen,; H. G. Zheng,; J. Ma, A highly solvent-stable metal-organic framework nanosheet: Morphology control, exfoliation, and luminescent property. Small 2018, 14, 1703873.
[157]
C. B. He,; K. D. Lu,; W. B. Lin, Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 2014, 136, 12253-12256.
[158]
H. Xu,; J. K. Gao,; X. F. Qian,; J. P. Wang,; H. J. He,; Y. J. Cui,; Y. Yang,; Z. Y. Wang,; G. D. Qian, Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A 2016, 4, 10900-10905.
[159]
Y. X. Wang,; M. T. Zhao,; J. F. Ping,; B. Chen,; X. H. Cao,; Y. Huang,; C. L. Tan,; Q. L. Ma,; S. X. Wu,; Y. F. Yu, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149-4155.
[160]
L. H. He,; F. H. Duan,; Y. P. Song,; C. P. Guo,; H. Zhao,; J. Y. Tian,; Z. H. Zhang,; C. S. Liu,; X. J. Zhang,; P. Y. Wang, et al. 2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: Consistency between electrochemical and surface plasmon resonance methods. 2D Mater. 2017, 4, 025098.
[161]
W. B. Lu,; X. F. Wu, Ni-MOF nanosheet arrays: Efficient non-noble-metal electrocatalysts for non-enzymatic monosaccharide sensing. New J. Chem. 2018, 42, 3180-3183.
[162]
Y. W. Zhao,; J. Ling,; S. G. Li,; M. Li,; A. R. Liu,; S. Q. Liu, Synthesis of porphyrin-based two-dimensional metal-organic framework nanodisk with small size and few layers. J. Mater. Chem. A 2018, 6, 2828-2833.
[163]
G. Das,; B. P. Biswal,; S. Kandambeth,; V. Venkatesh,; G. Kaur,; M. Addicoat,; T. Heine,; S. Verma,; R. Banerjee, Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 2015, 6, 3931-3939.
[164]
P. Albacete,; A. López-Moreno,; S. Mena-Hernando,; A. E. Platero-Prats,; E. M. Pérez,; F. Zamora, Chemical sensing of water contaminants by a colloid of a fluorescent imine-linked covalent organic framework. Chem. Commun. 2019, 55, 1382-1385.
[165]
Y. W. Peng,; Y. Huang,; Y. H. Zhu,; B. Chen,; L. Y. Wang,; Z. C. Lai,; Z. C. Zhang,; M. T. Zhao,; C. L. Tan,; N. L. Yang, et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698-8704.
[166]
W. W. Sun,; Y. J. Li,; S. K. Liu,; Q. P. Guo,; Y. H. Zhu,; X. B. Hong,; C. M. Zheng,; K. Xie, Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143-2148.
[167]
F. X. Wang,; X. W. Wu,; X. H. Yuan,; Z. C. Liu,; Y. Zhang,; L. J. Fu,; Y. S. Zhu,; Q. M. Zhou,; Y. P. Wu,; W. Huang, Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816-6854.
[168]
J. L. Liu,; W. X. Shi,; X. Wang, Cluster-nuclei coassembled into two-dimensional hybrid CuO-PMA sub-1 nm nanosheets. J. Am. Chem. Soc. 2019, 141, 18754-18758.
[169]
H. Z. Yang,; X. Wang, Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.
[170]
Y. X. Liu,; Y. Z. Wang,; H. Q. Wang,; P. H. Zhao,; H. Hou,; L. Guo, Acetylene black enhancing the electrochemical performance of NiCo-MOF nanosheets for supercapacitor electrodes. Appl. Surf. Sci. 2019, 492, 455-463.
[171]
Y. Zheng,; S. S. Zheng,; Y. X. Xu,; H. G. Xue,; C. S. Liu,; H. Pang, Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. Chem. Eng. J. 2019, 373, 1319-1328.
[172]
C. Li,; X. S. Hu,; W. Tong,; W. S. Yan,; X. B. Lou,; M. Shen,; B. W. Hu, Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl. Mater. Interfaces 2017, 9, 29829-29838.
[173]
D. W. Feng,; T. Lei,; M. R. Lukatskaya,; J. Park,; Z. H. Huang,; M. Lee,; L. Shaw,; S. C. Chen,; A. A. Yakovenko,; A. Kulkarni, et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 2018, 3, 30-36.
[174]
X. J. Zhan,; Z. Chen,; Q. C. Zhang, Recent progress in two-dimensional COFs for energy-related applications. J. Mater. Chem. A 2017, 5, 14463-14479.
[175]
M. Y. Wang,; H. Guo,; R. Xue,; Q. Li,; H. Liu,; N. Wu,; W. Q. Yao,; W. Yang, Covalent organic frameworks: A new class of porous organic frameworks for supercapacitor electrodes. Chemelectrochem 2019, 6, 2984-2997.
[176]
J. H. Sun,; A. Klechikov,; C. Moise,; M. Prodana,; M. Enachescu,; A. V. Talyzin, A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: Hybrid materials for energy storage. Angew. Chem., Int. Ed. 2018, 57, 1034-1038.
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 August 2020
Revised: 01 September 2020
Accepted: 01 September 2020
Published: 05 January 2021
Issue date: January 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This project was supported by the National Natural Science Foundation of China for Distinguished Young Scholars (No. 21625401) and the National Natural Science Foundation of China (Nos. 21727808 and 21971114).

Return