Journal Home > Volume 14 , Issue 3

Infrared lead chalcogenide quantum dots (QDs) suffer fast degradation due to the easy oxidation of surface chalcogen atoms. Here, we report a trioctylphosphine-mediated surface passivation method to improve the air stability of PbS QDs. Surface mechanism study reveals an in situ surface reaction, which leads to site-selective passivation of surface S atoms with lead mono-carboxylate. The surface capping motif sufficiently protects PbS QDs from oxygen and improves their stability as well as quantum efficiency regardless of the QD size and original ligands on surface cations. The modified PbS QDs display no obvious fluorescence quenching and surface oxidization after 30 days of air exposure. The robust surface capping also provides high compatibility of PbS QDs with polymers for optoelectronic device fabrication. The near-infrared LEDs based on the modified PbS QDs display a slight degradation of only 1.47% from the maximum intensity after continuous operation in air for 250 hours (lifetime > 10,000 h) at 0.5 W/cm2 power density, indicating the surface passivation route is promising strategy for promoting practical optoelectronic application of PbS QDs


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application

Show Author's information Xinsu Zhang1,§Yujuan Chen1,§Linyuan Lian2Zizhen Zhang1Yixuan Liu1Li Song1Chong Geng1( )Jianbing Zhang2Shu Xu1( )
Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

§ Xinsu Zhang and Yujuan Chen contributed equally to this work.

Abstract

Infrared lead chalcogenide quantum dots (QDs) suffer fast degradation due to the easy oxidation of surface chalcogen atoms. Here, we report a trioctylphosphine-mediated surface passivation method to improve the air stability of PbS QDs. Surface mechanism study reveals an in situ surface reaction, which leads to site-selective passivation of surface S atoms with lead mono-carboxylate. The surface capping motif sufficiently protects PbS QDs from oxygen and improves their stability as well as quantum efficiency regardless of the QD size and original ligands on surface cations. The modified PbS QDs display no obvious fluorescence quenching and surface oxidization after 30 days of air exposure. The robust surface capping also provides high compatibility of PbS QDs with polymers for optoelectronic device fabrication. The near-infrared LEDs based on the modified PbS QDs display a slight degradation of only 1.47% from the maximum intensity after continuous operation in air for 250 hours (lifetime > 10,000 h) at 0.5 W/cm2 power density, indicating the surface passivation route is promising strategy for promoting practical optoelectronic application of PbS QDs

Keywords: stability, surface modification, quantum dot, light-emitting diode, PbS

References(58)

[1]
H. P. Lu,; G. M. Carroll,; N. R. Neale,; M. C. Beard, Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 2019, 13, 939-953.
[2]
E. Lhuillier,; S. Keuleyan,; H. Liu,; P. Guyot-Sionnest, Mid-IR colloidal nanocrystals. Chem. Mater. 2013, 25, 1272-1282.
[3]
Y. F. Pan,; G. S. Wang,; L. Liu,; L. Guo,; S. H. Yu, Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284-294.
[4]
A. Shrestha,; M. Batmunkh,; A. Tricoli,; S. Z. Qiao,; S. Dai, Near-Infrared active lead chalcogenide quantum dots: Preparation, post-synthesis ligand exchange, and applications in solar cells. Angew. Chem., Int. Ed. 2019, 58, 5202-5224.
[5]
I. Moreels,; Y. Justo,; B. De Geyter,; K. Haustraete,; J. C. Martins,; Z. Hens, Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004-2012.
[6]
J. Jasieniak,; M. Califano,; S. E. Watkins, Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 2011, 5, 5888-5902.
[7]
B. D. Chernomordik,; A. R. Marshall,; G. F. Pach,; J. M. Luther,; M. C. Beard, Quantum dot solar cell fabrication protocols. Chem. Mater. 2017, 29, 189-198.
[8]
S. Kim,; A. R. Marshall,; D. M. Kroupa,; E. M. Miller,; J. M. Luther,; S. Jeong,; M. C. Beard, Air-stable and efficient PbSe quantum-dot solar cells based upon ZnSe to PbSe cation-exchanged quantum dots. ACS Nano 2015, 9, 8157-8164.
[9]
H. Y. Fu,; S. W. Tsang,; Y. G. Zhang,; J. Y. Ouyang,; J. P. Lu,; K. Yu,; Y. Tao, Impact of the growth conditions of colloidal PbS nanocrystals on photovoltaic device performance. Chem. Mater. 2011, 23, 1805-1810.
[10]
D. K. Kim,; Y. M. Lai,; B. T. Diroll,; C. B. Murray,; C. R. Kagan, Flexible and low-voltage integrated circuits constructed from high- performance nanocrystal transistors. Nat. Commun. 2012, 3, 1216.
[11]
J. S. Lee,; M. V. Kovalenko,; J. Huang,; D. S. Chung,; D. V. Talapin, Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348-352.
[12]
S. J. Oh,; N. E. Berry,; J. H. Choi,; E. A. Gaulding,; H. F. Lin,; T. Paik,; B. T. Diroll,; S. Muramoto,; C. B. Murray,; C. R. Kagan, Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett. 2014, 14, 1559-1566.
[13]
S. Pradhan,; F. Di Stasio,; Y. Bi,; S. Gupta,; S. Christodoulou,; A. Stavrinadis,; G. Konstantatos, High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra- nanocrystalline level. Nat. Nanotechnol. 2019, 14, 72-79.
[14]
L. F. Sun,; J. J. Choi,; D. Stachnik,; A. C. Bartnik,; B. R. Hyun,; G. G. Malliaras,; T. Hanrath,; F. W. Wise, Bright infrared quantum- dot light-emitting diodes through inter-dot spacing control. Nat. Nanotechnol. 2012, 7, 369-373.
[15]
A. L. Rogach,; A. Eychmüller,; S. G. Hickey,; S. V. Kershaw, Infrared- emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 2007, 3, 536-557.
[16]
F. Cui,; J. H. Zhang,; T. Y. Cui,; S. Liang,; B. Li,; Q. Lin,; B. Yang, From two-dimensional metal-organic coordination networks to near- infrared luminescent PbS nanoparticle/layered polymer composite materials. Nano Res. 2008, 1, 195-202.
[17]
Y. Park,; S. Jeong,; S. Kim, Medically translatable quantum dots for biosensing and imaging. J. Photoch. Photobio. C Photochem. Rev. 2017, 30, 51-70.
[18]
Z. J. Feng,; Y. M. Yang,; J. Zhang,; K. Wang,; Y. X. Li,; H. Xu,; Z. Wang,; E. Biskup,; S. X. Dong,; X. Yang, et al. In vivo and in situ real-time fluorescence imaging of peripheral nerves in the NIR-Ⅱwindow. Nano Res. 2019, 12, 3059-3068.
[19]
H. Beygi,; S. A. Sajjadi,; A. Babakhani,; J. F. Young,; F. C. J. M. Van Veggel, Surface chemistry of as-synthesized and air-oxidized PbS quantum dots. Appl. Surf. Sci. 2018, 457, 1-10.
[20]
M. Sykora,; A. Y. Koposov,; J. A. McGuire,; R. K. Schulze,; O. Tretiak,; J. M. Pietryga,; V. I. Klimov, Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 2010, 4, 2021-2034.
[21]
J. Tang,; L. Brzozowski,; D. A. R. Barkhouse,; X. H. Wang,; R. Debnath,; R. Wolowiec,; E. Palmiano,; L. Levina,; A. G. Pattantyus-Abraham,; D. Jamakosmanovic, et al. Quantum dot photovoltaics in the extreme quantum confinement regime: The surface-chemical origins of exceptional air-and light-stability. ACS Nano 2010, 4, 869-878.
[22]
H. E. Chappell,; B. K. Hughes,; M. C. Beard,; A. J. Nozik,; J. C. Johnson, Emission quenching in PbSe quantum dot arrays by short-term air exposure. J. Phys. Chem. Lett. 2011, 2, 889-893.
[23]
J. J. Peterson,; T. D. Krauss, Photobrightening and photodarkening in PbS quantum dots. Phys. Chem. Chem. Phys. 2006, 8, 3851-3856.
[24]
Y. M. Cao,; A. Stavrinadis,; T. Lasanta,; D. So,; G. Konstantatos, The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 2016, 1, 16035.
[25]
L. Tan,; P. D. Li,; B. Q. Sun,; M. Chaker,; D. L. Ma, Stabilities related to near-infrared quantum dot-based solar cells: The role of surface engineering. ACS Energy Lett. 2017, 2, 1573-1585.
[26]
L. Xu,; H. W. Liang,; Y. Yang,; S. H. Yu, Stability and reactivity: Positive and negative aspects for nanoparticle processing. Chem. Rev. 2018, 118, 3209-3250.
[27]
X. L. Shi,; S. Chen,; M. Y. Luo,; B. Huang,; G. Z. Zhang,; R. Cui,; M. X. Zhang, Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-Ⅱwindow. Nano Res. 2020, 13, 2239-2245.
[28]
J. Y. Woo,; S. Lee,; S. Lee,; W. D. Kim,; K. Lee,; K. Kim,; H. J. An,; D. C. Lee,; S. Jeong, Air-stable PbSe nanocrystals passivated by phosphonic acids. J. Am. Chem. Soc. 2016, 138, 876-883.
[29]
A. H. Ip,; S. M. Thon,; S. Hoogland,; O. Voznyy,; D. Zhitomirsky,; R. Debnath,; L. Levina,; L. R. Rollny,; G. H. Carey,; A. Fischer, et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577-582.
[30]
J. B. Zhang,; J. B. Gao,; E. M. Miller,; J. M. Luther,; M. C. Beard, Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 2014, 8, 614-622.
[31]
J. Tang,; K. W. Kemp,; S. Hoogland,; K. S. Jeong,; H. Liu,; L. Levina,; M. Furukawa,; X. H. Wang,; R. Debnath,; D. K. Cha, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765-771.
[32]
Z. J. Ning,; Y. Ren,; S. Hoogland,; O. Voznyy,; L. Levina,; P. Stadler,; X. Z. Lan,; D. Zhitomirsky,; E. H. Sargent, All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 2012, 24, 6295-6299.
[33]
J. Joo,; J. M. Pietryga,; J. A. McGuire,; S. H. Jeon,; D. J. Williams,; H. L. Wang,; V. I. Klimov, A reduction pathway in the synthesis of PbSe nanocrystal quantum dots. J. Am. Chem. Soc. 2009, 131, 10620-10628.
[34]
M. C. Weidman,; M. E. Beck,; R. S. Hoffman,; F. Prins,; W. A. Tisdale, Monodisperse, Air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 2014, 8, 6363-6371.
[35]
J. Y. Woo,; J. H. Ko,; J. H. Song,; K. Kim,; H. Choi,; Y. H. Kim,; D. C. Lee,; S. Jeong, Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100). J. Am. Chem. Soc. 2014, 136, 8883-8886.
[36]
H. Choi,; J. H. Ko,; Y. H. Kim,; S. Jeong, Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 135, 5278-5281.
[37]
C. R. Bealing,; W. J. Baumgardner,; J. J. Choi,; T. Hanrath,; R. G. Hennig, Predicting nanocrystal shape through consideration of surface- ligand interactions. ACS Nano 2012, 6, 2118-2127.
[38]
W. K. Bae,; J. Joo,; L. A. Padilha,; J. Won,; D. C. Lee,; Q. L. Lin,; W. K. Koh,; H. M. Luo,; V. I. Klimov,; J. M. Pietryga, Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine. J. Am. Chem. Soc. 2012, 134, 20160-20168.
[39]
J. B. Zhang,; J. B. Gao,; C. P. Church,; E. M. Miller,; J. M. Luther,; V. I. Klimov,; M. C. Beard, PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 2014, 14, 6010-6015.
[40]
D. N. Dirin,; S. Dreyfuss,; M. I. Bodnarchuk,; G. Nedelcu,; P. Papagiorgis,; G. Itskos,; M. V. Kovalenko, Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 2014, 136, 6550-6553.
[41]
J. B. Zhang,; B. D. Chernomordik,; R. W. Crisp,; D. M. Kroupa,; J. M. Luther,; E. M. Miller,; J. B. Gao,; M. C. Beard, Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano 2015, 9, 7151-7163.
[42]
M. A. Hines,; G. D. Scholes, Colloidal PbS nanocrystals with size- tunable near-infrared emission: Observation of post-synthesis self- narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844-1849.
[43]
J. B. Zhang,; R. W. Crisp,; J. B. Gao,; D. M. Kroupa,; M. C. Beard,; J. M. Luther, Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 2015, 6, 1830-1833.
[44]
D. Zherebetskyy,; M. Scheele,; Y. J. Zhang,; N. Bronstein,; C. Thompson,; D. Britt,; M. Salmeron,; P. Alivisatos,; L. W. Wang, Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380-1384.
[45]
A. J. Houtepen,; Z. Hens,; J. S. Owen,; I. Infante, On the origin of surface traps in colloidal II-VI semiconductor nanocrystals. Chem. Mater. 2017, 29, 752-761.
[46]
I. Moreels,; B. Fritzinger,; J. C. Martins,; Z. Hens, Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081-15086.
[47]
Y. Chang,; K. Li,; Y. L. Feng,; N. Liu,; Y. Cheng,; X. J. Sun,; Y. Q. Feng,; X. Li,; Z. J. Wu,; H. Y. Zhang, Crystallographic facet- dependent stress responses by polyhedral lead sulfide nanocrystals and the potential “safe-by-design” approach. Nano Res. 2016, 9, 3812-3827.
[48]
K. A. Abel,; J. N. Shan,; J. C. Boyer,; F. Harris,; F. C. J. M. Van Veggel, Highly photoluminescent PbS nanocrystals: The beneficial effect of trioctylphosphine. Chem. Mater. 2008, 20, 3794-3796.
[49]
M. Green, The nature of quantum dot capping ligands. J. Mater. Chem. 2010, 20, 5797-5809.
[50]
Y. X. Liu; D. Li; L. L. Zhang; Y. J. Chen; C. Geng; S. S. Shi; Z. Z. Zhang; W. G. Bi; S. Xu Amine- and acid-free synthesis of stable CsPbBr3 perovskite nanocrystals. Chem. Mater. 2020, 32, 1904-1913.
[51]
E. S. Williams,; K. J. Major,; A. Tobias,; D. Woodall,; V. Morales,; C. Lippincott,; P. J. Moyer,; M. Jones, Characterizing the influence of TOPO on exciton recombination dynamics in colloidal CdSe quantum dots. J. Phys. Chem. C 2013, 117, 4227-4237.
[52]
G. Almeida,; O. J. Ashton,; L. Goldoni,; D. Maggioni,; U. Petralanda,; N. Mishra,; Q. A. Akkerman,; I. Infante,; H. J. Snaith,; L. Manna, The phosphine oxide route toward lead halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 14878-14886.
[53]
X. Y. Liu,; Y. X. Liu,; S. Xu,; C. Geng,; Y. Y. Xie,; Z. H. Zhang,; Y. H. Zhang,; W. G. Bi, Formation of “steady size” state for accurate size control of CdSe and CdS quantum dots. J. Phys. Chem. Lett. 2017, 8, 3576-3580.
[54]
Z. J. Ning,; O. Voznyy,; J. Pan,; S. Hoogland,; V. Adinolfi,; J. X. Xu,; M. Li,; A. R. Kirmani,; J. P. Sun,; J. Minor, et al. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822-828.
[55]
A. Zebibula,; N. Alifu,; L. Q. Xia,; C. W. Sun,; X. M. Yu,; D. W. Xue,; L. W. Liu,; G. H. Li,; J. Qian, Ultrastable and biocompatible NIR-Ⅱ quantum dots for functional bioimaging. Adv. Funct. Mater. 2018, 28, 1703451.
[56]
S. Singh,; A. Singh,; B. C. Yadav,; P. Tandon,; S. Kumar,; R. R. Yadav,; S. I. Pomogailo,; G. I. Dzhardimalieva,; A. D. Pomogailo, Frontal polymerization of acrylamide complex with nanostructured ZnS and PbS: Their characterizations and sensing applications. Sensors Actuat. B Chem. 2015, 207, 460-469.
[57]
L. Tan,; F. Yang,; M. R. Kim,; P. D. Li,; D. T. Gangadharan,; J. Margot,; R. Izquierdo,; M. Chaker,; D. L. Ma, Enhanced long-term and thermal stability of polymer solar cells in air at high humidity with the formation of unusual quantum dot networks. ACS Appl. Mater. Inter. 2017, 9, 26257-26267.
[58]
Y. Y. Xie,; C. Geng,; X. Y. Liu,; S. Xu,; W. S. Xing,; X. S. Zhang,; Z. H. Zhang,; Y. H. Zhang,; W. G. Bi, Synthesis of highly stable quantum-dot silicone nanocomposites via in situ zinc-terminated polysiloxane passivation. Nanoscale 2017, 9, 16836-16842.
File
12274_2020_3081_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 June 2020
Revised: 28 August 2020
Accepted: 29 August 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Nos. 51672068, 61974052, and 51902082), Natural Science Foundation of Tianjin City (No. 17JCYBJC41500), Natural Science Foundation of Hebei Province (Nos. B2020202049, E2020202083, and F2019202252), Hubei Provincial Natural Science Foundation of China (No. 2017CFB417) and Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology.

Return