[1]
H. P. Lu,; G. M. Carroll,; N. R. Neale,; M. C. Beard, Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 2019, 13, 939-953.
[2]
E. Lhuillier,; S. Keuleyan,; H. Liu,; P. Guyot-Sionnest, Mid-IR colloidal nanocrystals. Chem. Mater. 2013, 25, 1272-1282.
[3]
Y. F. Pan,; G. S. Wang,; L. Liu,; L. Guo,; S. H. Yu, Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284-294.
[4]
A. Shrestha,; M. Batmunkh,; A. Tricoli,; S. Z. Qiao,; S. Dai, Near-Infrared active lead chalcogenide quantum dots: Preparation, post-synthesis ligand exchange, and applications in solar cells. Angew. Chem., Int. Ed. 2019, 58, 5202-5224.
[5]
I. Moreels,; Y. Justo,; B. De Geyter,; K. Haustraete,; J. C. Martins,; Z. Hens, Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004-2012.
[6]
J. Jasieniak,; M. Califano,; S. E. Watkins, Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 2011, 5, 5888-5902.
[7]
B. D. Chernomordik,; A. R. Marshall,; G. F. Pach,; J. M. Luther,; M. C. Beard, Quantum dot solar cell fabrication protocols. Chem. Mater. 2017, 29, 189-198.
[8]
S. Kim,; A. R. Marshall,; D. M. Kroupa,; E. M. Miller,; J. M. Luther,; S. Jeong,; M. C. Beard, Air-stable and efficient PbSe quantum-dot solar cells based upon ZnSe to PbSe cation-exchanged quantum dots. ACS Nano 2015, 9, 8157-8164.
[9]
H. Y. Fu,; S. W. Tsang,; Y. G. Zhang,; J. Y. Ouyang,; J. P. Lu,; K. Yu,; Y. Tao, Impact of the growth conditions of colloidal PbS nanocrystals on photovoltaic device performance. Chem. Mater. 2011, 23, 1805-1810.
[10]
D. K. Kim,; Y. M. Lai,; B. T. Diroll,; C. B. Murray,; C. R. Kagan, Flexible and low-voltage integrated circuits constructed from high- performance nanocrystal transistors. Nat. Commun. 2012, 3, 1216.
[11]
J. S. Lee,; M. V. Kovalenko,; J. Huang,; D. S. Chung,; D. V. Talapin, Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348-352.
[12]
S. J. Oh,; N. E. Berry,; J. H. Choi,; E. A. Gaulding,; H. F. Lin,; T. Paik,; B. T. Diroll,; S. Muramoto,; C. B. Murray,; C. R. Kagan, Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett. 2014, 14, 1559-1566.
[13]
S. Pradhan,; F. Di Stasio,; Y. Bi,; S. Gupta,; S. Christodoulou,; A. Stavrinadis,; G. Konstantatos, High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra- nanocrystalline level. Nat. Nanotechnol. 2019, 14, 72-79.
[14]
L. F. Sun,; J. J. Choi,; D. Stachnik,; A. C. Bartnik,; B. R. Hyun,; G. G. Malliaras,; T. Hanrath,; F. W. Wise, Bright infrared quantum- dot light-emitting diodes through inter-dot spacing control. Nat. Nanotechnol. 2012, 7, 369-373.
[15]
A. L. Rogach,; A. Eychmüller,; S. G. Hickey,; S. V. Kershaw, Infrared- emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 2007, 3, 536-557.
[16]
F. Cui,; J. H. Zhang,; T. Y. Cui,; S. Liang,; B. Li,; Q. Lin,; B. Yang, From two-dimensional metal-organic coordination networks to near- infrared luminescent PbS nanoparticle/layered polymer composite materials. Nano Res. 2008, 1, 195-202.
[17]
Y. Park,; S. Jeong,; S. Kim, Medically translatable quantum dots for biosensing and imaging. J. Photoch. Photobio. C Photochem. Rev. 2017, 30, 51-70.
[18]
Z. J. Feng,; Y. M. Yang,; J. Zhang,; K. Wang,; Y. X. Li,; H. Xu,; Z. Wang,; E. Biskup,; S. X. Dong,; X. Yang, et al. In vivo and in situ real-time fluorescence imaging of peripheral nerves in the NIR-Ⅱwindow. Nano Res. 2019, 12, 3059-3068.
[19]
H. Beygi,; S. A. Sajjadi,; A. Babakhani,; J. F. Young,; F. C. J. M. Van Veggel, Surface chemistry of as-synthesized and air-oxidized PbS quantum dots. Appl. Surf. Sci. 2018, 457, 1-10.
[20]
M. Sykora,; A. Y. Koposov,; J. A. McGuire,; R. K. Schulze,; O. Tretiak,; J. M. Pietryga,; V. I. Klimov, Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 2010, 4, 2021-2034.
[21]
J. Tang,; L. Brzozowski,; D. A. R. Barkhouse,; X. H. Wang,; R. Debnath,; R. Wolowiec,; E. Palmiano,; L. Levina,; A. G. Pattantyus-Abraham,; D. Jamakosmanovic, et al. Quantum dot photovoltaics in the extreme quantum confinement regime: The surface-chemical origins of exceptional air-and light-stability. ACS Nano 2010, 4, 869-878.
[22]
H. E. Chappell,; B. K. Hughes,; M. C. Beard,; A. J. Nozik,; J. C. Johnson, Emission quenching in PbSe quantum dot arrays by short-term air exposure. J. Phys. Chem. Lett. 2011, 2, 889-893.
[23]
J. J. Peterson,; T. D. Krauss, Photobrightening and photodarkening in PbS quantum dots. Phys. Chem. Chem. Phys. 2006, 8, 3851-3856.
[24]
Y. M. Cao,; A. Stavrinadis,; T. Lasanta,; D. So,; G. Konstantatos, The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 2016, 1, 16035.
[25]
L. Tan,; P. D. Li,; B. Q. Sun,; M. Chaker,; D. L. Ma, Stabilities related to near-infrared quantum dot-based solar cells: The role of surface engineering. ACS Energy Lett. 2017, 2, 1573-1585.
[26]
L. Xu,; H. W. Liang,; Y. Yang,; S. H. Yu, Stability and reactivity: Positive and negative aspects for nanoparticle processing. Chem. Rev. 2018, 118, 3209-3250.
[27]
X. L. Shi,; S. Chen,; M. Y. Luo,; B. Huang,; G. Z. Zhang,; R. Cui,; M. X. Zhang, Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-Ⅱwindow. Nano Res. 2020, 13, 2239-2245.
[28]
J. Y. Woo,; S. Lee,; S. Lee,; W. D. Kim,; K. Lee,; K. Kim,; H. J. An,; D. C. Lee,; S. Jeong, Air-stable PbSe nanocrystals passivated by phosphonic acids. J. Am. Chem. Soc. 2016, 138, 876-883.
[29]
A. H. Ip,; S. M. Thon,; S. Hoogland,; O. Voznyy,; D. Zhitomirsky,; R. Debnath,; L. Levina,; L. R. Rollny,; G. H. Carey,; A. Fischer, et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577-582.
[30]
J. B. Zhang,; J. B. Gao,; E. M. Miller,; J. M. Luther,; M. C. Beard, Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 2014, 8, 614-622.
[31]
J. Tang,; K. W. Kemp,; S. Hoogland,; K. S. Jeong,; H. Liu,; L. Levina,; M. Furukawa,; X. H. Wang,; R. Debnath,; D. K. Cha, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765-771.
[32]
Z. J. Ning,; Y. Ren,; S. Hoogland,; O. Voznyy,; L. Levina,; P. Stadler,; X. Z. Lan,; D. Zhitomirsky,; E. H. Sargent, All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 2012, 24, 6295-6299.
[33]
J. Joo,; J. M. Pietryga,; J. A. McGuire,; S. H. Jeon,; D. J. Williams,; H. L. Wang,; V. I. Klimov, A reduction pathway in the synthesis of PbSe nanocrystal quantum dots. J. Am. Chem. Soc. 2009, 131, 10620-10628.
[34]
M. C. Weidman,; M. E. Beck,; R. S. Hoffman,; F. Prins,; W. A. Tisdale, Monodisperse, Air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 2014, 8, 6363-6371.
[35]
J. Y. Woo,; J. H. Ko,; J. H. Song,; K. Kim,; H. Choi,; Y. H. Kim,; D. C. Lee,; S. Jeong, Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100). J. Am. Chem. Soc. 2014, 136, 8883-8886.
[36]
H. Choi,; J. H. Ko,; Y. H. Kim,; S. Jeong, Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 135, 5278-5281.
[37]
C. R. Bealing,; W. J. Baumgardner,; J. J. Choi,; T. Hanrath,; R. G. Hennig, Predicting nanocrystal shape through consideration of surface- ligand interactions. ACS Nano 2012, 6, 2118-2127.
[38]
W. K. Bae,; J. Joo,; L. A. Padilha,; J. Won,; D. C. Lee,; Q. L. Lin,; W. K. Koh,; H. M. Luo,; V. I. Klimov,; J. M. Pietryga, Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine. J. Am. Chem. Soc. 2012, 134, 20160-20168.
[39]
J. B. Zhang,; J. B. Gao,; C. P. Church,; E. M. Miller,; J. M. Luther,; V. I. Klimov,; M. C. Beard, PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 2014, 14, 6010-6015.
[40]
D. N. Dirin,; S. Dreyfuss,; M. I. Bodnarchuk,; G. Nedelcu,; P. Papagiorgis,; G. Itskos,; M. V. Kovalenko, Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 2014, 136, 6550-6553.
[41]
J. B. Zhang,; B. D. Chernomordik,; R. W. Crisp,; D. M. Kroupa,; J. M. Luther,; E. M. Miller,; J. B. Gao,; M. C. Beard, Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano 2015, 9, 7151-7163.
[42]
M. A. Hines,; G. D. Scholes, Colloidal PbS nanocrystals with size- tunable near-infrared emission: Observation of post-synthesis self- narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844-1849.
[43]
J. B. Zhang,; R. W. Crisp,; J. B. Gao,; D. M. Kroupa,; M. C. Beard,; J. M. Luther, Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 2015, 6, 1830-1833.
[44]
D. Zherebetskyy,; M. Scheele,; Y. J. Zhang,; N. Bronstein,; C. Thompson,; D. Britt,; M. Salmeron,; P. Alivisatos,; L. W. Wang, Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380-1384.
[45]
A. J. Houtepen,; Z. Hens,; J. S. Owen,; I. Infante, On the origin of surface traps in colloidal II-VI semiconductor nanocrystals. Chem. Mater. 2017, 29, 752-761.
[46]
I. Moreels,; B. Fritzinger,; J. C. Martins,; Z. Hens, Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081-15086.
[47]
Y. Chang,; K. Li,; Y. L. Feng,; N. Liu,; Y. Cheng,; X. J. Sun,; Y. Q. Feng,; X. Li,; Z. J. Wu,; H. Y. Zhang, Crystallographic facet- dependent stress responses by polyhedral lead sulfide nanocrystals and the potential “safe-by-design” approach. Nano Res. 2016, 9, 3812-3827.
[48]
K. A. Abel,; J. N. Shan,; J. C. Boyer,; F. Harris,; F. C. J. M. Van Veggel, Highly photoluminescent PbS nanocrystals: The beneficial effect of trioctylphosphine. Chem. Mater. 2008, 20, 3794-3796.
[49]
M. Green, The nature of quantum dot capping ligands. J. Mater. Chem. 2010, 20, 5797-5809.
[50]
Y. X. Liu; D. Li; L. L. Zhang; Y. J. Chen; C. Geng; S. S. Shi; Z. Z. Zhang; W. G. Bi; S. Xu Amine- and acid-free synthesis of stable CsPbBr3 perovskite nanocrystals. Chem. Mater. 2020, 32, 1904-1913.
[51]
E. S. Williams,; K. J. Major,; A. Tobias,; D. Woodall,; V. Morales,; C. Lippincott,; P. J. Moyer,; M. Jones, Characterizing the influence of TOPO on exciton recombination dynamics in colloidal CdSe quantum dots. J. Phys. Chem. C 2013, 117, 4227-4237.
[52]
G. Almeida,; O. J. Ashton,; L. Goldoni,; D. Maggioni,; U. Petralanda,; N. Mishra,; Q. A. Akkerman,; I. Infante,; H. J. Snaith,; L. Manna, The phosphine oxide route toward lead halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 14878-14886.
[53]
X. Y. Liu,; Y. X. Liu,; S. Xu,; C. Geng,; Y. Y. Xie,; Z. H. Zhang,; Y. H. Zhang,; W. G. Bi, Formation of “steady size” state for accurate size control of CdSe and CdS quantum dots. J. Phys. Chem. Lett. 2017, 8, 3576-3580.
[54]
Z. J. Ning,; O. Voznyy,; J. Pan,; S. Hoogland,; V. Adinolfi,; J. X. Xu,; M. Li,; A. R. Kirmani,; J. P. Sun,; J. Minor, et al. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822-828.
[55]
A. Zebibula,; N. Alifu,; L. Q. Xia,; C. W. Sun,; X. M. Yu,; D. W. Xue,; L. W. Liu,; G. H. Li,; J. Qian, Ultrastable and biocompatible NIR-Ⅱ quantum dots for functional bioimaging. Adv. Funct. Mater. 2018, 28, 1703451.
[56]
S. Singh,; A. Singh,; B. C. Yadav,; P. Tandon,; S. Kumar,; R. R. Yadav,; S. I. Pomogailo,; G. I. Dzhardimalieva,; A. D. Pomogailo, Frontal polymerization of acrylamide complex with nanostructured ZnS and PbS: Their characterizations and sensing applications. Sensors Actuat. B Chem. 2015, 207, 460-469.
[57]
L. Tan,; F. Yang,; M. R. Kim,; P. D. Li,; D. T. Gangadharan,; J. Margot,; R. Izquierdo,; M. Chaker,; D. L. Ma, Enhanced long-term and thermal stability of polymer solar cells in air at high humidity with the formation of unusual quantum dot networks. ACS Appl. Mater. Inter. 2017, 9, 26257-26267.
[58]
Y. Y. Xie,; C. Geng,; X. Y. Liu,; S. Xu,; W. S. Xing,; X. S. Zhang,; Z. H. Zhang,; Y. H. Zhang,; W. G. Bi, Synthesis of highly stable quantum-dot silicone nanocomposites via in situ zinc-terminated polysiloxane passivation. Nanoscale 2017, 9, 16836-16842.