Journal Home > Volume 14 , Issue 1

Growing high quality graphene films directly on glass by chemical vapor deposition (CVD) meets a growing demand for constructing high-performance electronic and optoelectronic devices. However, the graphene synthesized by prevailing methodologies is normally of polycrystalline nature with high nucleation density and limited domain size, which significantly handicaps its overall properties and device performances. Herein, we report an oxygen-assisted CVD strategy to allow the direct synthesis of 6-inch-scale graphene glass harvesting markedly increased graphene domain size (from 0.2 to 1.8 μm). Significantly, as-produced graphene glass attains record high electrical conductivity (realizing a sheet resistance of 900 Ω·sq-1 at a visible-light transmittance of 92%) amongst the state-of-the-art counterparts, readily serving as transparent electrodes for fabricating high-performance optical filter devices. This work might open a new avenue for the scalable production and application of emerging graphene glass materials with high quality and low cost.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications

Show Author's information Bingzhi Liu1,2Huihui Wang2Wei Gu2Le Zhou3Zhaolong Chen1Yufeng Nie2Congwei Tan1Haina Ci4Nan Wei4Lingzhi Cui1Xuan Gao2Jingyu Sun2,4( )Yanfeng Zhang1,2( )Zhongfan Liu1,2,4( )
Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing Graphene Institute (BGI), Beijing 100095, China
College of Engineering, Peking University, Beijing 100871, China
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China

Abstract

Growing high quality graphene films directly on glass by chemical vapor deposition (CVD) meets a growing demand for constructing high-performance electronic and optoelectronic devices. However, the graphene synthesized by prevailing methodologies is normally of polycrystalline nature with high nucleation density and limited domain size, which significantly handicaps its overall properties and device performances. Herein, we report an oxygen-assisted CVD strategy to allow the direct synthesis of 6-inch-scale graphene glass harvesting markedly increased graphene domain size (from 0.2 to 1.8 μm). Significantly, as-produced graphene glass attains record high electrical conductivity (realizing a sheet resistance of 900 Ω·sq-1 at a visible-light transmittance of 92%) amongst the state-of-the-art counterparts, readily serving as transparent electrodes for fabricating high-performance optical filter devices. This work might open a new avenue for the scalable production and application of emerging graphene glass materials with high quality and low cost.

Keywords: glass, O2-assisted chemical vapor deposition (CVD), graphene growth, large domain, optical filter

References(39)

[1]
X. Chen,; B. Wu,; Y. Q. Liu, Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 2016, 45, 2057-2074.
[2]
K. Kim,; J. Y. Choi,; T. Kim,; S. H. Cho,; H. J. Chung, A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338-344.
[3]
H. Kim,; I. Song,; C. Park,; M. Son,; M. Hong,; Y. Kim,; J. S. Kim,; H. J. Shin,; J. Baik,; H. C. Choi, Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 2013, 7, 6575-6582.
[4]
C. Y. Su,; A. Y. Lu,; C. Y. Wu,; Y. T. Li,; K. K. Liu,; W. J. Zhang,; S. Y. Lin,; Z. Y. Juang,; Y. L. Zhong,; F. R. Chen, et al. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 2011, 11, 3612-3616.
[5]
P. Y. Teng,; C. C. Lu,; K. Akiyama-Hasegawa,; Y. C. Lin,; C. H. Yeh,; K. Suenaga,; P. W. Chiu, Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379-1384.
[6]
J. Y. Sun,; Z. L. Chen,; L. Yuan,; Y. B. Chen,; J. Ning,; S. W. Liu,; D. L. Ma,; X. J. Song,; M. K. Priydarshi,; A. Bachmatiuk, et al. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136-11144.
[7]
Z. L. Chen,; B. L. Guan,; X. D. Chen,; Q. Zeng,; L. Lin,; R. Y. Wang,; M. K. Priydarshi,; J. Y. Sun,; Z. P. Zhang,; T. B. Wei, et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Res. 2016, 9, 3048-3055.
[8]
J. B. Pang,; R. G. Mendes,; P. S. Wrobel,; M. D. Wlodarski,; H. Q. Ta,; L. Zhao,; L. Giebeler,; B. Trzebicka,; T. Gemming,; L. Fu, et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 2017, 11, 1946-1956.
[9]
X. D. Chen,; Z. L. Chen,; W. S. Jiang,; C. H. Zhang,; J. Y. Sun,; H. H. Wang,; W. Xin,; L. Lin,; M. K. Priydarshi,; H. Yang, et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 2017, 29, 1603428.
[10]
J. Y. Chen,; Y. L. Guo,; L. L. Jiang,; Z. P. Xu,; L. P. Huang,; Y. Z. Xue,; D. C. Geng,; B. Wu,; W. P. Hu,; G. Yu, et al. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 2014, 26, 1348-1353.
[11]
J. Y. Chen,; Y. G. Wen,; Y. L. Guo,; B. Wu,; L. P. Huang,; Y. Z. Xue,; D. C. Geng,; D. Wang,; G. Yu,; Y. Q. Liu, Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548-17551.
[12]
J. Y. Sun,; T. Gao,; X. J. Song,; Y. F. Zhao,; Y. W. Lin,; H. C. Wang,; D. L. Ma,; Y. B. Chen,; W. F. Xiang,; J. Wang, et al. Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J. Am. Chem. Soc. 2014, 136, 6574-6577.
[13]
M. Kolmer,; R. Zuzak,; A. K. Steiner,; L. Zajac,; M. Engelund,; S. Godlewski,; M. Szymonski,; K. Amsharov, Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO2 surfaces. Science 2019, 363, 57-60.
[14]
J. Y. Sun,; Y. B. Chen,; M. K. Priydarshi,; Z. Chen,; A. Bachmatiuk,; Z. Y. Zou,; Z. L. Chen,; X. J. Song,; Y. F. Gao,; M. H. Rümmeli, et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846-5854.
[15]
O. V. Yazyev,; S. G. Louie, Electronic transport in polycrystalline graphene. Nat. Mater. 2010, 9, 806-809.
[16]
P. Y. Huang,; C. S. Ruiz-Vargas,; A. M. Van Der Zande,; W. S. Whitney,; M. P. Levendorf,; J. W. Kevek,; S. Garg,; J. S. Alden,; C. J. Hustedt,; Y. Zhu, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389-392.
[17]
A. W. Cummings,; D. L. Duong,; V. L. Nguyen,; D. Van Tuan,; J. Kotakoski,; J. E. B. Vargas,; Y. H. Lee,; S. Roche, Charge transport in polycrystalline graphene: Challenges and opportunities. Adv. Mater. 2014, 26, 5079-5094.
[18]
S. J. Wei,; L. P. Ma,; M. L. Chen,; Z. B. Liu,; W. Ma,; D. M. Sun,; H. M. Cheng,; W. C. Ren, Water-assisted rapid growth of monolayer graphene films on SiO2/Si substrates. Carbon 2019, 148, 241-248.
[19]
T. Ma,; Z. B. Liu,; J. X. Wen,; Y. Gao,; X. B. Ren,; H. J. Chen,; C. H. Jin,; X. L. Ma,; N. S. Xu,; H. M. Cheng, et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 2017, 8, 14886.
[20]
H. P. Wang,; X. D. Xue,; Q. Q. Jiang,; Y. L. Wang,; D. C. Geng,; L. Cai,; L. P. Wang,; Z. P. Xu,; G. Yu, Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 2019, 141, 11004-11008.
[21]
S. Choubak,; M. Biron,; P. L. Levesque,; R. Martel,; P. Desjardins, No graphene etching in purified hydrogen. J. Phys. Chem. Lett. 2013, 4, 1100-1103.
[22]
N. Reckinger,; A. Felten,; C. N. Santos,; B. Hackens,; J. F. Colomer, The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition. Carbon 2013, 63, 84-91.
[23]
W. Guo,; B. Wu,; S. Wang,; Y. Q. Liu, Controlling fundamental fluctuations for reproducible growth of large single-crystal graphene. ACS Nano 2018, 12, 1778-1784.
[24]
C. Köhler,; Z. Hajnal,; P. Deák,; T. Frauenheim,; S. Suhai, Theoretical investigation of carbon defects and diffusion in α-quartz. Phy. Rev. B 2001, 64, 085333.
[25]
Y. F. Hao,; M. S. Bharathi,; L. Wang,; Y. Y. Liu,; H. Chen,; S. Nie,; X. H. Wang,; H. Chou,; C. Tan,; B. Fallahazad, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720-723.
[26]
X. Z. Xu,; Z. H. Zhang,; L. Qiu,; J. N. Zhuang,; L. Zhang,; H. Wang,; C. N. Liao,; H. D. Song,; R. X. Qiao,; P. Gao, et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930-935.
[27]
B. Y. Dai,; L. Fu,; Z. Y. Zou,; M. Wang,; H. T. Xu,; S. Wang,; Z. F. Liu, Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522.
[28]
Z. Y. Zou,; L. Fu,; X. J. Song,; Y. F. Zhang,; Z. F. Liu, Carbide-forming groups IVB-VIB metals: A new territory in the periodic table for CVD growth of graphene. Nano Lett. 2014, 14, 3832-3839.
[29]
F. Torrisi,; T. Hasan,; W. P. Wu,; Z. P. Sun,; A. Lombardo,; T. S. Kulmala,; G. W. Hsieh,; S. Jung,; F. Bonaccorso,; P. J. Paul, et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992-3006.
[30]
A. Bachmatiuk,; J. Zhao,; S. M. Gorantla,; I. G. G. Martinez,; J. Wiedermann,; C. Lee,; J. Eckert,; M. H. Rummeli, Low voltage transmission electron microscopy of graphene. Small 2015, 11, 515-542.
[31]
J. H. Warner,; M. H. Rümmeli,; L. Ge,; T. Gemming,; B. Montanari,; N. M. Harrison,; B. Büchner,; G. A. D. Briggs, Structural transformations in graphene studied with high spatial and temporal resolution. Nat. Nanotechnol. 2009, 4, 500-504.
[32]
J. K. Wassei,; R. B. Kaner, Graphene, a promising transparent conductor. Mater. Today 2010, 13, 52-59.
[33]
Y. B. Chen,; J. Y. Sun,; J. F. Gao,; F. Du,; Q. Han,; Y. F. Nie,; Z. L. Chen,; A. Bachmatiuk,; M. K. Priydarshi,; D. L. Ma, et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839-7846.
[34]
L. Z. Cui,; X. D. Chen,; B. Z. Liu,; K. Chen,; Z. L. Chen,; Y. Qi,; H. H. Xie,; F. Zhou,; M. H. Rümmeli,; Y. F. Zhang,; Z. F. Liu, Highly conductive nitrogen-doped graphene grown on glass toward electrochromic applications. ACS Appl. Mater. Interfaces 2018, 10, 32622-32630.
[35]
D. W. Kim,; Y. H. Kim,; H. S. Jeong,; H. T. Jung, Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat. Nanotechnol. 2012, 7, 29-34.
[36]
H. H. Wang,; B. Z. Liu,; L. Wang,; X. D. Chen,; Z. L. Chen,; Y. Qi,; G. Cui,; H. H. Xie,; Y. F. Zhang,; Z. F. Liu, Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles. ACS Nano 2018, 12, 6443-6451.
[37]
Y. U. Jung,; K. W. Park,; S. T. Hur,; S. W. Choi,; S. J. Kang, High-transmittance liquid-crystal displays using graphene conducting layers. Liq. Cryst. 2014, 41, 101-105.
[38]
E. I. L. Jull,; H. F. Gleeson, Tuneable and switchable liquid crystal laser protection system. Appl. Opt. 2017, 56, 8061-8066.
[39]
J. H. Yoon,; E. J. Seo,; S. J. Lee,; Y. J. Lim,; H. S. Shin,; S. M. Song,; J. M. Myoung,; S. H. Lee, Fast switching and luminance-controlled fringe-field switching liquid crystal device for vehicle display. Liq. Cryst. 2019, 46, 1747-1752.
File
12274_2020_3080_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 November 2019
Revised: 06 August 2020
Accepted: 28 August 2020
Published: 05 January 2021
Issue date: January 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0200103), the National Natural Science Foundation of China (Nos. 61527814, 51702225, 51432002, 61474109, 51290272, 51502007, 11474274, 51520105003, and 51672007), National Equipment Program of China (No. ZDYZ2015-1), Beijing Municipal Science and Technology Planning Project (Nos. Z161100002116020 and Z161100002116032), Beijing Natural Science Foundation (No. 4182063), and Natural Science Foundation of Jiangsu Province (No. BK20170336).

Return